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This document describes data structures, designs and concepts which are the 
proprietary intellectual property of Xanadu Operating Company, Inc. The 
contents of this document are not for distribution or release in whole or in 
part to any other party without the express permission of Xanadu Operating 
Company, Inc. All portions of this document are to be considered trade secrets 
of Xanadu Operating Company, Inc. including the fact that some previously 
published data structures may fall into the classification of "enfilades". 

WARNING! 

He who transgresses against the propriety of the Information contained herein 
shall be Cursed! Woe unto all who reveal the Secrets contained herein for they 
shall be Hunted unto the Ends of the Universe. They shall be afflicted unto 
the Tenth Generation with Lawyers. Their Corporate Bodies shall be Broken and 
cast into the Pit. Their Corporate Veil shall be Pierced, and Liability shall 
attach to the Malefactors in personem. They shall suffer Ulcers and 
Migraines and Agonies Unimagined. Yea, Verily, for such shall co .. to pass 
against all who would Dare to Test the Powers of Xanadu unto their Doom. 
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Proposal for the Implementation by 
Xanadu Operating Company of a 

Full-scale Semi-distributed Multi-user Hypertext System 

Xanadu Operating Company (XOC) is developing a hypertext information 
storage management system called "Xanadu". Hypertext is text or data which 
exhibits patterns of structure or interconnectedness which are not necessarily 
very regular and which may change over time. Project Xanadu, the informal 
group that became XOC, has developed a family of data structures which in 
combination appear to meet the requirements of such a system. A working 
prototype exists implementing the rudiments of the design. Since its 
computational coaplexity and storage overhead are essentially logarithmic with 
the volume of stored information, it should be able to efficiently handle very 
large amounts of material. 

XOC intends to develop hypertext system software beyond the present 
prototype stage, producing a fully operational and usable system. 
Specifically, we propose to transport the current software to the Interlisp 
environment, extend the design, and complete its implementation. The system 
will then be tuned and optimized to increase its speed and compactness. The 
end product of this effort will be a complete "semi-distributed" multi-user 
Xanadu "backend" integrated with the Interlisp environment and able to serve as 
an Ethernet-based resource for a wide variety of applications. Details of the 
development plan, including a complete schedule and budget, are included in the 
attached documents. 

We believe the benefits of our system will be longer-term than 1s typical 
with commercial ventures. An instantiation of these ideas in a working 
database manager will be of immediate benefit to researchers in many fields. 
SDFls clients appear most likely to be able to perceive and utilize the 
potential in these ideas and their instantiation. Not only do these people 
have a present need for this sort of tool, but they also will provide an 
excellent community of critics to stimulate the refinement and generalization 
of both the design and the implementation. 
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The Xanadu Hypertext System Architecture 

The Xanadu Hypertext System manages the storage, retrieval and 
manipulation of character strings and orgls. An orgl is a structure which 
represents the organization of a collection of address spaces (called virtual 
spaces or V-spaces for short), each containing an editable stream of 
atoms. This stream is referred to as the virtual stream or the variant 
stream (or V-stream for short). 

An atom 1s the primitive element that the Xanadu System deals with. 
There are two types of atoms in the present system: orgls, representing 
structural and organizational information, and characters (8-bit bytes), 
representing actual data. Other types of atoms are conceivable, such as 
videodisk frames or other kinds of (non-orgl) organizational structures, but 
these are not present in the current design. 

Any atom contained in the system may be referenced by specifying its 
virtual stream address. This is recursively defined as the virtual stream 
address of the orgl containing the atom, combined with the number of the 
V-space which holds the atom within that orgl and the position of the atom 
itself within that V-space. Orgls that are not contained within other orgls 
are addressed by a special sort of V-stream address called an invariant orgl 
identifier, terminating the recursion. Thus, a virtual stream address 
contains a variant part and an invariant part which are syntactically 
separable. 

The contents of the V-spaces within an orgl may be edited. This in turn 
means that the V-stream addresses of atoms within an orgl may change, as 
implied by the adjective "variant". The contents of an orgl .ay be added to 
or deleted from at any pOint in a V-space. In addition, sections of a V-space 
may be rearranged (i.e., a section may be moved or two sections transposed). 
These operations -- insert, delete and rearrange -- can cause the position and 
relative ordering, the V-stream order, of atoms to shift, thus altering those 
atoms' V-stream addresses as well. 

Atoms are stored internally in an invariant stream (or I-stream for 
short). They appear, and are addressed, in I-stream order. As the adjective 
"invariant" suggests, the I-stream address of an atom never changes. The 
function performed by an orgl is the mapping back and forth between I-stream 
addresses and V-stream addresses. When the contents of a V-space are edited, 
the orgl mapping that V-space is changed, and thus so are the virtual positions 
of the atoms. 

The I-stream addresses of atoms are not generally visible externally. The 
only exceptions are invariant orgl identifiers which are in fact the I-stream 
addresses of "top level" orgls. 

The above discussion refers to mappings to and from particular I-stream 
and V-stream addresses. In practice, we work with spans rather than point 
addresses. A span is an abbreviated way of referring to a group of contiguous 
addresses. A span consists of a starting address together with a length. A 
V-span is a span of V-stream addresses, and an I-span is similarly a span 
on the I-stream. An orgl maps from one V-span to a set of I-spans, and from an 
I-span to a set of sets of V-spans. 
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The actual atoms located in a particular I-span may be found using another 
structure called the grandmap. The grandmap is a tree of pointers to all the 
atoms currently stored in the system, indexed by I-stream address. The 
grandmap provides a mapping between I-stream addresses and the locations of 
the actual underlying physical storage used to hold the atoms. 

There are thus three levels of addressing used in this system: 

V-stream addresses identify atoms to the outside world. The V-stream 
address of an atom may change and, as will be explained below, an atom may 
have more than one V-stream address. 

I-stream addresses identify atoms internally in a consistent and 
implementation independent fashion. The I-stream address of an atom in 
the Xanadu system is analogous to the accession number of a document in a 
library. An atom has but one I-stream address and this address never 
changes. 

Physical storage addresses identify the locations of the actual bits 
and bytes of atoms themselves. An atom's physical address is both 
variable and highly implementation dependent. For example, it may change 
due to reorganization of the underlying storage for purposes of efficiency 
or convenience, or due to changes in the types of storage devices used. 

To retrieve the atom located at a particular V-stream address Vq, the 
invariant part of Vq's V-stream .address specification is extracted. This will 
be an invariant orgl identifier for the orgl which maps Vq to some I-stream 
address. Since this invariant orgl identifier is itself an I-stream address, 
it may be (a~c is) used as an index into the grandmap to retrieve the relevant 
orgl. Vq (the full V-stream address, not just the variant part) is then mapped 
through this orgl to its corresponding I-stream address. This second I-stream 
address in turn is used for a second lookup in the grandmap to acquire the atom 
which Vq addresses. The following diagram illustrates the data flow: 

V-stream address Vq 
1 1 
1 +--------------------------+ 
I I 

(extract invariant part) I 
1 1 

I-stream address of 
v 
orgl mapping from Vq 

1 
1 
1 
1 
I 
1 
1 
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1 
I +-----+----+ 

1 grandmap I 
+-----+----+ 

1 
V +---+--+ 

orgl mapping from Vq ==============1 orgl , 
+~--+--+ 

1 
v 

I-stream address of atom at Vq 
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+-----+----+ 
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+-----+----+ 

I 
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the atom at Vq 

An important consequence of the V-stream to I-stream mapping is that 
several V-stream addresses may all map to the same I-stream address. This 
means that an orgl may contain multiple virtual copies of a given set of 
material. Although the I-stream address of an atom is related to the orgl in 
which it originally was inserted, the V-stream address(es) of that atom are 
under no such constraint. Therefore, virtual copies of material originating in 
one orgl may appear in other orgls. 

Another consequence of this structure is that multiple orgls may be used 
to represent alternate V-to-I mappings for the same set of atoms, yielding 
alternative versions of a given collection of material. In practice, the 
data structures used to realize such orgls can share their underlying 
components in those places where the V-to-I mappings are similar and need 
only differ in their structure where the versions are actually different. 
(See the accompanying paper on the implementation of the Xanadu internal data 
structures for a detailed description of how this mechanism works). 

The orgls which represent multiple versions of the same family of material 
are collectively called a phylum. All of the orgls in a phylum are 
"descended" from a single original orgl, in the sense that they were created by 
applying some edit operations to that orgl or to one of its later descendents. 

Xanadu provides a facility called historical trace. The sequence of 
edit operations that have been applied to the orgls of a phylum can be seen 
to form an historical trace tree. This tree branches wherever a different 
version was created. Such versions result when two or more processes modify 
the same orgl through different berts or when a process backs an orgl up to an 
earlier state and then makes edits. 

Since each of the editing primitives which the system supports is a 
reversible operation upon an orgl, the state of an orgl at any point in its 
history conceivably might be obtained by inverting each of the edits in an edit 
log. However, a data structure is constructed which represents the edit 
history of a phylum at varying levels of detail. This data structure is a tree 
which at the bottom level represents individual edit operations and at the 
higher levels represents compositions of these lower level edits -­
"superedits" that are single transformations that represent the end result of a 
series of more primitive operations. This tree is indexed by position in the 
phylum's historical trace tree (note that there are two trees here: the 
historical trace tree, representing the sequence of operations forming the 
phylum's history, and the data structure erected over this tree, representing 
the operations themselves). The end result of a retrieval operation on this 
data structure is not a series of edit operations but the actual V-to-I mapping 
that existed at the indicated point in the phylum's history. The details of 
how this is accomplished are given in the accompanying paper which describes 
the data structures themselves. . 

The system can retrieve any atom stored within it, given the atom's 
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V-stream address. In the case of a character atom, the retrieval operation 
returns the character itself. In the case of an orgl atom, an entity called a 
bert is returned. A bert is an identifier for an orgl pointing to a 
current access, as opposed to an established V-stream address. It grants the 
process to which the bert is given exclusive access to a particular V-to-I 
mapping. 

A process, in the Xanadu System, means a particular external connection 
to the system which may request the retrieval, creation and editing of orgls 
and characters. An arbitrary (i.e., implementation dependent) number of 
processes may access the system concurrently. 

Separate processes which request the retrieval of the same orgl at the 
same time are each given different berts which reter to the orgl. Associated 
with each orgl is a count of the number of berts which currently refer to it. 
If one of these processes then makes an edit change to the orgl, a new orgl 
will be created. The processls bert will be made to refer to the new orgl and 
the old orglls reference count will be decremented. By this means, the other 
processes will not "see" the change, and their berts will still refer to the 
same V to I mapping as previously. Any information about the orglls state 
which the other processes might have been keeping externally will not be 
invalidated by the one processls edit operation. 

A structure called the spanmap implements two mappings. The first of 
these is from the I-stream addresses of atoms in general to the I-stream 
addresses of orgls. The second mapping is from the same original I-stream 
addresses to berts. The spanmap is designed to answer querys about which orgls 
reference which I-spans. It quickly identifies the orgl or orgls that map some 
V-stream address(es) onto a particular I-stream address. This is the inverse 
of the set of mappings implemented by the full collection of orgls stored in 
the system. 

The spanmap, as its name suggests, is fundamentally designed to deal with 
spans. It enables the system to answer queries about which orgls refer to 
particular pieces of material, given the V-stream addresses of the atoms of 
interest. The general form of such a query takes the form of the question, 
"what are the V-stream addresses of all the orgls which refer to this 
particular V-span?" The V-span of interest is mapped to a set of I-spans (call 
this set QJ for "query), using the procedure described above in the 
discussion of the operation of orgls. This I-span set, Q, is then used to 
initiate a lookup in the spanmap which results in a set of one or more I-stream 
addresses corresponding to the orgls which reference Q (along with berts 
identifying orgls that reference Q but may not yet have I-stream addresses). 
These I-stream addresses are then looked up in the grandmap, yielding the orgls 
themselves. These orgls are in turn used to map Q to a set of V-spans (keep in 
mind that the mapping implemented by an orgl is bidirectional) which are then 
returned as the answer to the process which initiated the query. 

Since the number of orgls which might refer to a particular I-span is 
potentially very large, the spanmap enables restricted retrievals. A 
retrieval may be restricted to return only orgls from a particular set, for 
example those which reference a particular I-span in addition to the one of 
interest. This is important, among other reasons, because queries are 
generally expressed in terms of V-spans, and a single V-span may map to a 
number of I-spans. It one wishes to determine the set of orgls which reference 
a particular V-span, what is desired is the intersection of the sets of orgls 
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that reference the I-spans that the V-span of interest maps to. 

The spanmap also enables queries that may be expressed in terms of the 
overlap of spans, rather than simple reference. Thus one aay ask which orgls 
contain I-spans that begin inside a particular span and end outside of it, for 
example. The reader is again referred to the companion paper on the 
implementation of the various data structures. 

In summary then, the system consists of four primary components: 
1) orgls, which map back and forth between V-stream and I-stream 

addresses, 
2) the grandmap, which maps from I-stream addresses to the physical 

addresses of atoms (characters and orgls) themselves, 
3) the spanmap, which maps from the I-stream addresses of atoms to the 

I-stream addresses of orgls which reference those atoms, and 
4) an historical trace, which enables the determination of the contents 

of an orgl at any point in its history or the history of any of its other 
versions. 
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Enfilade Theory 

The underlying data abstraction of the Xanadu System is the enfilade. 
The grandmap, spanmap and orgls are all implemented using different types of 
enfilades. We shall first discuss enfilades generally and then show how the 
theory is adapted to specific implementation. 

DEFINITIONS 

An enfilade is a data structure in which the positions of data items in 
index space (i.e., the retrieval keys associated with those data items) are 
stored indirectly, as local positions relative to the data items' neighborhoods 
in the data structure, rather than being stored directly, as absolute 
positions. 

Enfilades have traditionally been implemented as trees. Each node of the 
tree is called a crum (in order to disambiguate the term "node" -- see 
footnote 1). Each crum contains, either explicitly or implicitly, two 
components of indexing information, called the wid and the disp. In 
addition, a crum may contain other structural inforaation, such as pointers to 
descendent or sibling crums. 

A disp represents the relative offset, in index space, of its crum 
from its crum's parent. The "sum" of a crum's disp with those of all of its 
ancestors determines the crum's absolute position in index space. A change in 
a crum's disp therefore causes a corresponding change not only in the crum's 
absolute position but in those of all of its descendents. 

A wid represents the extent, in index space, of its crum's collective 
descendants, relative to itscrum's position (which is in turn derived from its 
crum's disp). A change in a crum's wid may result if the wid or disp of one of 
the crum's children changes. 

An enfilade's disps are interpreted in a top-down fashion, telling the 
relationship of crums to their ancestors, while the wids are interpreted from 
the bottom-up, indicating the relationship of crums to their descendents. 

A group of sibling crums, all descended from the same parent crum, is 
collectively referred to as a loaf or crum-block. The single crum which 
forms the root of the tree and from which all other crums are descended is 
called the fulcrum. The disp of the fulcrum is offset relative to the origin 
of the index space. The crums which form the leaves of the tree are called 
bottom crums. The tree is maintained at a constant depth, so all bottom 
are the same number of levels below the fulcrum. Bottom crums may contain 
actual data in addition to structural and indexing information and therefore 
may have a different structure or form than their ancestors do. Non-bottom 
crums are referred to as upper crums. When ennumerating the levels of an 
enfilade, it is conventional to number from the bottom up so that the level 
number of a crum will not change as the enfilade grows or shrinks (levels are 
added or deleted at the top). 

An index space may be multi-dimensional, and not all dimensions need 
participate in enfiladic operations, as described below. 

An enfilade is similar in many ways to a conventional B-tree. This is 
especially so when considering the set of primitive operations that are 
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defined. However, an enfilade is not a B-tree. Enfilades possess two 
properties that distinguish them from B-trees (properties that were, in fact, 
the motivation for the invention of the first enfilades). These properties 
are rearrangability and the capacity for sub-tree sharing. These derive from 
the nature of wids and disps as local abstractions independent of the overall 
frame of reference of the full data structure. 

While enfilades have traditionally been implemented as trees, we do not 
feel that this is essential. Generalization of the theory of enfilades to 
other types of data structures, for example hash tables, has been considered 
but not yet examined in depth. 

OPERATIONS 

The fundamental operations on an enfilade are retrieve, rearrange and 
append. These are augmented by the useful, though not strictly necessary, 
operations insert and delete. All of these are supported by the 
"housekeeping" operations cut, recombine, level push and level pop. 

The retrieve operation obtains a data item associated with a particular 
location in index space . Such a data item may be stored in an enfilade 
either directly, by actually storing it in the bottom crum associated with 
the desired position in index space, or indirectly, as a function of the wids 
and disps of the crums traversed while descending the tree to that bottom crum. 
The latter alternative 1s fairly unusual and deserves elaboration. For 
example, enfilades in index spaces with multiple independent dimensions could 
store data by indexing with some dimensions and not others and then return the 
positions of bottom crums along the other dimensions . A single enfilade may 
contain several collections of data at once, some stored one way and some 
another. 

The general algorithm for retrieve is: 

retrieve (indexSpacePosition) 
result <-- recursiveRetrieve (indexSpacePosition, fulcrum, .0.) 

end retrieve 

recursiveRetrieve (index, aerum, cumulativelndex) 
if (index .==. cumulativelndex) 

result <-- data (aerum) 
else 

for each child of aerum 
if (disp(child) .<=. index) and (index .<. (disp(child) .+. wid(child))) 

result <-- recursiveRetrieve (index, child, cumulativelndex .+. 
disp(chlld» 

end if 
end for 

end if 
end recursiveRetrieve 

where disp(crum) extracts a crum's disp, wid(crum) extracts its wid, and 
data(crum) extracts the datum from a bottom crum. The symbols .==., ~ 
and .<=. represent comparison operators in index space. The symbol ~ 
represents "addition" in index space. The symbol ~ represents the origin 
of the index space. If less than the full number of possible dimensions is 
being used for indexing, the index space operators must be specified to take 
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this into account. The symbol <-- is an assignment operator. result is 
assigned to to return a value. "The control constructs are what they appear to t 

Note that this algorithm retrieves exactly one data item stored directly 
in a bottom crum. If data are stored indirectly in the wids and disps, as 
described above, the algorithm must be modified accordingly. To implement the 
case described previously (where some dimensions are used for indexing and 
others for indirect data storage), the operators .==., ~ and .<=. 
should be defined only to compare along the indexing dimensions, while .+. 
should be defined on all dimensions. The result returned should not be the 
extraction of data from the bottom crum but the extraction of the data 
dimension components of cumulativelndex. 

Also note that it is possible for a single index space position to map to 
more than one data item, although this algorithm would only return the last of 
these. The possibility of such multiple hit retrievals is a general property 
of enfilades, although specific types of enfilades may by their nature exclude 
it (multiple hit retrievals may occur, for example, in the case of a 
multi-dimensional index space when data are retrieved using indices with less 
than the full number of dimensions). The obvious generalization of collecting 
aultiple data items into a set was omitted for the sake of clarity. 

This algorithm also does not take into account the possibility that the 
desired data item might not be present at all. Once again, the generalization 
of collecting the results in a set would correct this (the result in such a 
case would be an empty set) and the omission is for clarity. 

In cases where multiple hits are excluded, retrieval time is logarithmic 
with the number of data items stored. Where multiple hits are permitted, 
non-logarithmic elements are "introduced and the analysis is not so 
straightforward, but depends upon the specific nature of the enfilade in 
question. In the case of multi-dimensional index spaces, retrieval times 
depend on the splitting and regrouping algorithms used to balance the tree. 
There are tradeoffs that depend on the number of dimensions that are typically 
to be used to retrieve with and the performance in atypical retrievals. If the 
enfilade is totally optimized along one dimension, retrievals will be of 
logarithmic order along that dimension and linear along the others. If it is 
optimized along D dimensions collectively and retrievals are performed along K 
of those dimensions, the retrieval time will be on the order of 
N**«D-K)/D}*log(N), K<=D, where N is the number of data items stored in the 
enfilade. 

The rearranqe operation alters the index space positions of clusters of 
data items by selective alteration or transposition of disps. Rearrangability 
is one of the two essential properties of enfilades which distinguish them from 
other sorts of data structures (the other, sub-tree sharability, is discussed 
below). Rearrange changes the relative ordering of crums in index space. 

Rearrange operations are specified in terms of cuts. There are two 
"flavors" of rearrange, called three-cut rearrange and four-cut rearrange. 
A cut delineates a boundary for the rearrange operation. A cut is a 
separation between two regions of interest, defined by a position in index 
space, 0, such that there exists a pair of sibling crums (i.e., crums descended 
from the same parent), A1 and A2, such that: 

indexSpacePosition(Al) .<=. 0 .<. indexSpacePosition(A2) 
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and 
(indexSpacePositlon(Al) .+. disp(Al» .<= C 

and, for any crum Q in the enfilade at a level lower than that of Al and A2: 

indexSpacePosition(Q) .<=. C implies that either 
indexSpacePosition(Q) .<. indexSpacePosition(Al) 

or 
Q is a descendant of Al 

and 

C .<. indexSpacePosition(Q) implies that 
indexSpacePosition(A2) .<-. indexspacePosition(Q) 

where, if the index space is multi-dimensional, the comparison operations are 
limited to the dimensions along which the cut is being performed (cuts are 
often made along less than the full number of dimensions). 

Cuts are generally used in groups (in the case of rearrange, in groups 
of three or four). When multiple cuts are used together they are constrained 
to propagate upward until all cuts reach a common ancestor. In other words, if 
cut Cl is bounded by crums Al and A2, as described above, and cut C2 is 
similarly bounded by crums A3 and A4, then crums AI, A2, A3 and A4 should all 
have the same parent. 

A three-cut rearrange performed with cuts C1, C2 and C3 moves the 
material between C2 and C3 to the position defined by Cl (or, equivalently, 
moves the aaterial between Cl and C2 to the position define by C3). This is 
accomplished at the level of the sibling crums at the top of the three cuts by 
adjusting some of the crums' disps, as follows, where P is the parent to all of 
the crums at the top of the cuts: 

for each crum that 1s a child of P 

end for 

pos <-- indexSpacePosition(crum) 
if (Cl .<. pos) and (pos .<=. C2) 

disp(crum) <-- disp(crum) 
else 1f (C2 .<. pos) and (pos .<= 

disp(crum) <-- disp(crum) 
end if 

. +. (C3 
C3) 

(C2 . -. 

where the symbol :..=...:.... represents "subtraction" in index space. 

C2) 

C1) 

A four-cut rearrange performed with cuts Cl, C2, C3 and C4 transposes 
the material between cuts Cl and C2 and the material between cuts C3 and C4. 
As with the three-cut rearrange, this is performed by manipulating the disps 
of the crums at the top of the cuts: 

tor each crum that is a child at P 
pos <-- indexSpacePosition(crum) 
if (C1 .<. pas) and (pos .<-. C2) 

disp(crum) <-- disp(crum) .+. (04 
else it (C2 .<. pas) and (pos .<=. C3) 

disp(crum) <-- disp(crum) .-. (C2 
else if (C3 .<. pos) and (pos .<~. C4) 

02) 

Cl) .+. (C4 C3) 
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disp(crum) <-- disp(crum) (C3 C1) 
end if 

end for 

It can be seen that the three-cut rearrange is equivalent to a four-cut 
rearrange in which two adjacent cuts are identical. 

The cut operation itself is accomplish@d by splitting crums which 
straddle the cut location. The two new crums correspond to the two sides of 
the cut. The children of the old crum are assigned to the new crums according 
to which side of the cut they fallon -- any children which themselves straddle 
the cut are split using the same procedure recursively. Cuts are usually made 
in groups, with the cutting process terminating when a single crum spans all of 
the cut location (this crum corresponds to the crum P in the algorithms above). 
The following is the algorithm for cut: 

cut (cutSet) 
recursiveCut (cutSet, fulcrum) 

end cut 

recursiveCut (cutSet, parentCrum) 
dontDiveDeeperFlag <-- TRUE 
tor each child of parentCrum 

end for 

it (disp(child) .<. tirstCut(cutS@t» and (lastCut(cutSet) 

end if 

.<-. (disp(child) .+. wid(child») 
dontDiveDeeperFlag <-- PALSE 
tor each cut in cutSet 

cut <-- cut .-. disp(child) 
end tor 
recurs~veCut (cutSet, child) 

1f (dontDiveDeeperFlag) 
chopUp (cutSet, parentCrum) 

end if 
end recursiveCut 

chopOp (cutSet, parentCrum) 
for each cut 1n cutSet 

tor each child of parentCrum 

end tor 
end chopUp 

end for 

split (cut, crum) 

it (disp(child) .<. cut) and (cut .<-. (disp(child) 

end if 

.+. wid(child») 
neWChildSet <-- split(cut, child) 
disown(parentCrum, child) 
adopt (parentCrum, leftChlld(newChildSet» 
adopt (parentCrum, rightChild(newChildSet» 
break out of inner loop 

leftCrum <-- createNewCrum () 
rightCrum <-- createNewCrum () 
disp(leftCrum) <-- disp(crum) 
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wid(leftCrum) <-- cut .• disp(crum) 
disp(r1ghtCrum) <-- cut 
wid(rightCrum) <-- wid(crum) .+. disp(crum) .. cut 
for each child of crum 

if «disp(child) .+. wid(child» .<. cut) 
adopt (leftCrum, child) 

else if (cut .<=. disp(child» 

else 

end if 

adopt (rightCrum, child) 

neWChildSet <-- split(cut .. disp(child), child) 
adopt (leftCrum, leftChild(newChildSet» 
adopt (rightCrum, rightChild(newChildSet» 

end for 
result <-- makeChildSet(leftCrum, rightCrum) 

end split 

where makeChildSet(leftCrum, rightCrum) takes two crums and returns them in 
some sort of ordered collection, leftChild(childSet) returns the first child 
in such a collection, and rightChild(childSet) returns the other child~ 
adopt(parent, child) adds the crum child to the set of children of parent 
and disown(parent, child) removes it (discarding child); createNewCrum() 
creates a new, uninitialized crum; and firstCut(cutSet) returns the first (in 
index space) cut in a set of cuts, and lastCut(cutSet) similarly return the 
last one. 

The append operation adds new elements to the data structure by 
extending the range of index space covered by it and associating the new 
elements with these extended index space positions. 

The general algorithm to append a single new element to an enfilade is: 

append (newThing, beyond, where) 
potentialNewCrum <-- recursiveAppend (newThing, fulcrum, beyond, where) 
if (notNull(potentialNewCrum» 

levelPush (potentialNewCrum) 
end if 

end append 

recursiveAppend (newThing, parent, beyond, where) 
if (where .== .. 0.) 

newCrum <-- createNewBottomCrum () 
data(newCrum) (-- newThing 
w1d(newCrum) <-- naturalW1d(newTh1ng) 
disp(newCrum) <-- disp(parent) .+. beyond 
result <-- newCrum 

else 
for each child of parent 

if (d1sp(child) .<=. where) and (where .<. (disp(ch1ld) .+. 
wide child) ) ) 

potentialNewCrum <-- recursiveAppend(newThing, child, beyond, 
where .-. disp(ch1Id» 

break 
end if 

end for 
if (notNull(potentiaINewCrum» 
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if (numberOfChildren(parent) >- MaximumNumberOfCrumslnALoaf) 
newCrum <-- createNewCrum () 

else 

disp(newCrum) <-- disp(potentialNewCrum) 
disp(potentialNewCrum) <-- .0. 
wid (newCrum) <-- wid(potentlalNewCrum) 
result <-- newCrum 

wId(parent) <-- enwidify(children(parent), potentialNewCrum) 
adopt(parent, potentialNewCrum) 
result <-- NULL 

end if 
else 

result <-- NULL 
end if 

end if 
end recursiveAppend 

where naturaIWid(dataltem) is a function that determines the wid of a bottom 
crum associated with a particular data item and enwidify(crum1, crum2, ... ) is 
the widdative function which computes the wid of a parent crum from the wids 
and disps of its children. The widdative function is one of the fundamental 
operators that defines an .enfilade, along with .+. and .- .. The location 
appended to is represented by the two arguments where and beyond which 
indicate the position in the enfilade to which the new data element is to be 
appended and the distance beyond that position that will define the new data 
element's own position. The value MaximumNumberOfCrumslnALoat sets a limit 
to the amount of "fanout" at each level of the tree. 

Rnfiladic trees are generally balanced by maintaining the requirement that 
the number of children of anyone crum (i.e., the number of crume in a loaf) 
may not exceed a given threshold. In practice, since the structure of bottom 
crums and upper crums aay differ, it is often the case that this threshold will 
differ between bottom loaves and upper loaves. The actual values chosen for 
these thresholds depend upon the actual entilade in question, and are typically 
selected to optimize retrieval speed, disk space efficiency, or some other 
eapirically determined, implementation dependent criteria. 

The level push operation adds an additional level to the tree when an 
append or insert operation causes the number of children of the fulcrum to 
grow too large. It simply creates a new fulcrum from which is descended the 
old one. The algorithm is: 

levelPush (newCrum) 
newFulcrum <-- createNewCrum () 
disp(newFulcrum) <-- .0. 
wid (newPulcrum) <-- enwidify(fulcrum, newCrum) 
adopt (newFulcrum, fulcrum) 
adopt (newFulcrum, newCrum) 
fulcrum <-- newFulcrum 

end levelPush 

where the argument newCrum represents the new sIblIng to the old fulcrum 
from which is descended the branch of the tree which caused the old fulcrum to 
overflow. 

The ,insert operation adds a new data element at a random position in the 
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enfilade. Insert is not a strictly necessary operation, since it is 
functionally equivalent to an append operation followed by a rearrange 
operation. The append adds the new item to the data structure and then the 
rearrange relocates it to the desired location. In practice, insert is often 
implemented as a separate operation, for reasons of efficiency or convenience. 
An insertion is accomplished by making a cut at the desired insertion point, 
extending this cut upwards to a crum whose wid is large enough to encompass the 
data to be inserted, and then plugging the new material in. The disps of crums 
.>. the new material at this level are then incremented accordingly. The 
algorithm to accomplish this is left as an exercise for the reader in order not 
to overly extend this paper. 

The delete operation removes things from an enfilade. Delete, like 
insert, is also not strictly necessary, since undesired material can be 
relocated to any arbitrary "purgatory" by the rearrange operation. In actual 
use, however, it often desirable to actually delete things in order to be able 
to reclaim the storage that they occupy. The delete operation is quite simple: 
two cuts are made on the boundaries of the unwanted region of index space and 
propagated up to a common ancestor. The child crums of this ancestor which 
lie between the cuts are then disowned and the disps of greater siblings 
reduced accordingly. The disowned crums and all of their descendants may then 
be deallocated or left for garbage collection. 

Deletes and rearranges can result in an enfilade that is a badly 
fragmented, unbalanced tree and in which many crums have fewer than the 
optimum number of children. This in turn can result in a tree which has more 
levels than necessary, with a potentially adverse affect upon performance. The 
recombine operation is used to tidy things up by merging sibling crums. The 
algorithm to merge two Siblings is: 

primitiveRecombine (parent, sibling1, sibling2) 
newCrum <-- createNewCrum () 
disp(newCrum) <-- disp(siblingl) 
for each child of siblingl 

end for 

disown(siblingl, child) 
adopt (newCrum, child) 

dispCorrection <-- disp(sibling2) .. disp(siblingl) 
for each child of sibling2 

end for 

disown(sibling2, child) 
disp(child) <-- disp(child) .+. dispCorrection 
adopt (newCrum, child) 

wid(newCrum) <-- enwidify(children(newCrum» 
disown(parent, sibling1) 
disown(parent, sibling2) 
adopt(parent, newCrum) 

end primitiveRecombine 

The term recombine is commonly used to refer to the process of climbing 
around the enfiladic tree and selectively applying the above operation in order 
to perform some general housecleaning. Such a process may also include cut 
operations to split up recombined crums which have too many children, perhaps 
interleaving cuts with primitiveRecombines in order to "shuffle" crums around 
in the tree. The methods for doing this are heuristic rather than algorithmic, 
and depend both on the nature of the particular enfilade in question and the 
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data with which it is being used. Certain applications may not, in fact, 
require any recombines to be performed at all. 

A recombine may also invoke a level pop operation to remove an excess 
level from the tree. This can be performed when the fulcrum has but a single 
child. The algorithm 1s s1mply: 

levelPop () 
newFulcrum <-- theOneChildOf(fulcrum) 
disp(newFulcrum) <-- disp(newFulcrum) .+. disp(fulcrum) 
disown(fulcrum, newFulcrum) 
fulcrum <-- newFulcrum 

end levelPop 

where theOneChildOf(fulcrum) extracts the fulcrum's (presumably) only child. 

OBSERVATIONS 

The use of wids and disps means that each crum in an enfilade is located 
relative to its parent rather than to any absolute coordinate space. This in 
turn means that enfilades may engage in sub-tree sharing. Multiple crums on 
a given level of one or more enfilades may pOint to a single lower crum as one 
of their children. This has the effect of making virtual copies of the 
sub-tree represented by that crum and all of its descendents. The index 
space position of the bottom crums of such a sub-tree depends upon the 
particular parent crum through which they are accessed. Sub-tree sharability 
and rearrangability, both the result of the localizing action of wids and 
disps, are the two properties which most significantly distinguish enfilades 
from other sorts of data structures. 

One of the problems with multi-dimensional data is that, unlike one 
dimensional data, there is, in general, no single well-defined ordering of the 
data. K-ary trees (insert reference here) solve this problem using projection 
onto a single dimension. Enfilades use the locality of wids and disps to 
eliminate the need for ordering. 

One of the many useful applications of sub-tree sharing is versioning 
-- the creation enfilades which represent alternate organizations of a given 
body of data. Often, alternate versions of some set of material will have 
significant portions in common (insert reference on Reps I subtree sharing here) 
(this, in fact, may be what we mean when we say two things are "versions" of 
each other, rather than saying that they are separate things). Common portions 
of two data sets can be represented by a single enfiladic sub-tree. Separate 
data structure is only required where they actually differ. If the differences 
between two versions are small relative to the total volume of data, the 
storage savings can be significant. In addition, alterations to the shared 
portions may also be shared, thus changing one data set can change the other 
correspondingly, if this is desired. 

The recombine operation must be reconsidered in the light of sub-tree 
sharing. Recombination is not always desirable, even when an enfilade is badly 
balanced, since it would be an error to recombine a shared crum with an 
unshared one. The recombine operation must be carefully constructed, if used 
at all, in applications where sub-tree sharing is expected. 

Another interesting (and pleasing) property of enfilades is that they 
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naturally and automatically tend to adapt themselves to take advantage of any 
clustering of the data in index space. This is because crums are grouped 
together into loaves according to the volume of material stored, rather than 
according to the material's indices. In addition, it is often the case that 
cuts will tend to occur in the less dense regions of the data structure. Over 
a period of time, the various manipulations performed will tend to bring about 
a helpful measure of correlation between patterns of sub-tree grouping in the 
enfilade and patterns of clumping in the data that it stores. 

SUMMARY 

An enfilade is a tree structure in which the nodes, called crums, do not 
directly store the indexing key, but rather a pair of localized abstractions of 
the key called the wid and the disp. These represent the extent and 
position relative to a parent in index space. Manipulation of an enfilade is 
supported by the operations retrieve, append, rearrange, insert, 
delete, recombine, cut, level push and level pop. Enfilades also 
allow sub-tree sharing. 

(FOOTNOTE 1: In the Xanadu nomenclature, the term node refers to a computer 
system which is a member of a distributed data storage and communications 
network. The term crum is preferred for reference to a node in an enfiladic 
data structure. The extra term is introduced to avoid confusion, since the 
full-scale Xanadu design involves both enfilades and computer networks.) 
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Xanadu Hypertext System Data Structures 

The current Xanadu backend is constructed using three essential data 
structures: 

1) the granf1lade, used to implement the grandmap 

2) the poomfilade, used to implement orgls 

3) the spanfilade, used to implement the spanmap 

A fourth data structure, called the historical trace enfilade, used to 
realize the historical trace facility, has been designed but not yet 
implemented. In addition, alternate designs for the spanmap and the orgl, 
called the drexfilade and the DIV poom respectively, are anticipated. All 
of these data structures are described in this document. This document also 
describes another important aspect of the Xanadu implementation: the numbering 
system, tumblers, used to address entities in the system and the compressed 
number representation, humbers, that allows tumblers to be stored to 
arbitrary precision with reasonable efficiency. 

TUMBLERS AND BUMBERS 

A form of transfinitesimal number called a tumbler is used frequently 
throughout the system. Tumblers are like the numbers used to identify 
chapters, sections, sub-sections, pages, paragraphs and sub-paragraphs in many 
technical manuals. They are represented externally as a sequence of integer 
fields separated by periods ("~I) and internally as a string of integers. 
For example, 3.2 and 47.23.137.0.5 are tumblers (the period is delimiter 
for the human reader and is not essential to the fundamental notion of 
what tumblers are). 

A non-commutative arithmetic operation called tumbler addition is 
defined. For example: 

3. 5.10. 6 
+ 2.16. 3 

5.16. 3 

This arithmetic gives different roles to the two tumblers: the first specifies 
a position -- where something is -- and the second specifies an offset -- a 
distance to move forward. In this example, only the first field of the 
original position matters. A couple more examples are: 

25. 6.46.93 
+ O. O. 3. 1. 21 

25. 6.49. 1. 21 

O. O. 3. 1. 21 
+ 25. 6.46.93 

25. 6.46.93 

The following rules describe the procedure for tumbler addition: 

1) Evaluating from the most to the least significant fields (i.e., from 
left to right), the fields of the final result are equal to the 
corresponding fields of the initial position as long as the 
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corresponding fields of the offset are zero. 
2) The first non-zero offset field is added to the corresponding field of 

the initial position. 
3) The remaining fields of the final result are equal to the remaining 

fields of the offset. 

Since tumbler addition is non-commutative, there are two possible forms of 
tumbler subtraction. We call these strong tumbler subtraction and weak 
tumbler subtraction. The Xanadu system makes use of a generalized tumbler 
difference operator defined as follows: when taking the difference of two 
tumblers A and B, if A is greater than B then the result is obtained by 
strongly subtracting B from A: otherwise the result is obtained by weakly 
subtracting A from B. As a result, no subtraction operation is ever performed 
that results in a negative tumbler. Like tumbler addition, tumbler subtraction 
involves two operands with different roles: a position and a negative 
offset. The difference between the two forms of tumbler subtraction is that 
strong subtraction results in a tumbler which may be added to the negative 
offset to get back to the original position, whereas weak subtraction involves 
simply applying the same essential procedure as tumbler addition with field 
subtraction substituted for field addition. 

Here are some examples of strong tumbler subtraction: 

1.4.3 
s- 1.1.1 

0.3.3 

Note that: 

1.1.1 
+ 0.3.3 

1.4.3 

0.1.2.3.4.5 
s- 0.0.1. 2 • 3.3 

0.1.2.3.4.5 

0.0.1.2.3.3 
+ 0.1.2.3.4.5 

0.1.2.3.4.5 

0.1.2.3.4.5.6 
s- 0.1.2.3.3.3.3 

0.0.0.0.1.5.6 

0.1.2.3.3.3.3 
+ 0.0.0.0.1.5.6 

0.1.2.3.4.5.6 

The following rules describe the procedure for strong tumbler subtraction: 

1) Evaluating form the most to the least Significant fields (i.e., from 
left to right), the fields of the final result are equal to zero as 
long as the corresponding fields of the initial position and the 
negative offset are equal to each other. 

2) The first non-equal field of the negative offset is subtracted from 
the corresponding field of the initial pOSition. 

3) The remaining fields of the final result are equal to the remaining 
fields of the initial position. 

Here are some examples of weak tumbler subtraction: 

1.4.3 0.3.3.3.4.5.6 0.1.2.3.4.5.6 
w- 1.1.1 w- 0.1.1.3.3.3.3 w- 0.0.0.2.3.4.5 

----- ------------- -------------
0 0.2 0.1.2.1 

The following rules describe the procedure for weak tumbler subtraction: 
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1) Evaluating from the most to the least significant fields (i.e., from 
left to right), the fields of the final result are equal to the 
corresponding fields of the initial position as long as the 
corresponding fields of the negative offset are zero. 

2) The first non-zero negative offset field is subtracted from the 
corresponding field of the initial position. 

Tumblers are used in the Xanadu system because of their accordion-like 
extensibility. They have the property that, like both real and rational 
numbers, between any two numbers are infinitely many more. Tumbler-space has 
a porosity that allows any amount of new material to be inserted at any pOint. 

Tumblers are stored internally using Humbers. "Humber" is short for 
"Huffman encoded number" or "huge number". A humber is a form of infinite 
precision integer used to represent the fields of tumblers. Use of infinite 
precision integers prevents constraints on the size of a tumbler's field due to 
a restriction to, for example, 32-bit numbers. 

Humbers are constructed out of 8-bit bytes. If the high-order bit of the 
first byte is 0, then the remaining 7 bits encode the number itself, with 
possible values ranging from 0 to 127. It the aforementioned bit is 1, then 
the remaining 7 bits encode the number of bytes in the number, and that many 
bytes then follow which contain it. Should more than 127 bytes be required to 
represent the number, the length zero (i.e., a high order bit of 1, followed by 
seven O's) indicates that what follows is a humber (applying this definition 
recursively) that encodes the length, followed by the indicated number of bytes 
encoding the number. 

This representation never runs out of preciSion and can represent any 
non-negative integer whatsoever (and, in fact can represent negatives with 
minor modification). In addition, most tumbler fields in the Xanadu system 
are small (i.e., less than 127) and thus can be encoded in a single byte. 
Tumblers are represented in a floating-point like format, with a mantissa 
consisting of a field count humber followed by the indicated number of field 
humbers, and an exponent humber indicating the number of leading 0 fields 
(leading since tumblers are transfinitesimals). 

Tumblers are used in the Xanadu system as both V-stream addresses and 
I-stream addresses. We perform some tricks with these addresses by encoding 
some information about the thing addressed in parts of the tumbler itself. In 
particular we use fields with the value "0" as a delimiter to separate one part 
of a tumbler from another. For example, the "0" in 4.3.7.0.19.1 separates the 
tumbler into the two pieces 4.3.7 and 19.1. Of course, the pieces have to be 
constrained to not contain any "O"s themselves. Note also that the pieces are 
themselves tumblers. 

USing the O-field-as-delimiter scheme, an invariant orgl identifier is 
represented as a tumbler of the form: 

<node>.O.<account>.O.<orgl> 

where <node>, <account> and <orgl> are tumblers that don't contain "0" as 
one of their constituent fields. The <node> component is there in anticipation 
of future implementations which store orgls in a distributed network, and 
represents the particular node of that network with which the orgl is 
associated. <account> similarly anticipates future mUlti-user systems, and 
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represents the particular user or account (i.e., user associated with node 
number <node» which owns the orgl. <orgl> indicates which particular one of 
that user's orgls is desired. For example, 5.0.3.2.0.11 indicates the 11'th 
orgl belonging to the 3.2'nd user on the 5'th node. In the present single-node 
single-user system, addresses all resemble O.O.<orgl> with the <node> and 
<account> components being empty. 

Both V-stream and I-stream addresses are tumblers of the form: 

<invariant orgl id>.O.<v-space>.<position> 

where <invariant orgl id> is tumbler representing an invariant orgl 
identifier of the form described above and <v-space> and <position> are 
inteqer fields. <v-space> specifies which virtual space of the orgl in 
question is desired, and <position> indicates a particular atom within that 
v-space. Thus 5.0.3.2.0.11.0.41.23 denotes the 23'rd atom of the 41'th v-space 
of the orgl specified in the previous example. 

Use of the "0" field as a delimiter to concatenate the various components 
of addressing information into a single tumbler allows a single tumbler-space 
to contain all possible V-stream or I-stream addresses. This in turn 
simplifies the construction of data structures that use V-stream or I-stream 
space as their index space by eliminating any need for dealing with the various 
comPonents separately. 

Future plans may include support for an extended indirect V-stream address 
ot the form: 

<v-stream address>.<v-space>.<virtual position> 

where <v-stream address> is a V-stream address of either this form or the 
previous one. This notation allows the immediate specification of atoms via 
orgls which are themselves within other orgls. For example, 
5.0.3.2.0.11.0.41.23.2.1 would indicate the l'st atom of the 2'nd v-space of 
the orgl addressed in the previous example (assuming, of course, that it was in 
fact an orgl and not a character atom). 

The porosity of tumbler space enables new addresses to be created easily 
without conflict with previously created ones. For example, node 5 from the 
past few examples could create a new node 5.1 without requiring knowledge of 
whether, say, node 6 existed or not. Orgl ids for new versions of previously 
existing orgls are created this way. For example, the first new version of 
orgl 1.0.2.0.3 would be 1.0.2.0.3.1 and the next would be 1.0.2.0.3.2. 

Physical storage locations are not, in general, represented using 
tumblers. Instead they have a form which is entirely dependent upon the 
nature and quantity of the underlying storage hardware and the dictates of the 
operating system software which interfaces with that hardware. 

THE GRANFILADE 

The granfilade is one of the three major data structures inside the 
Xanadu system, and probably the simplest. It is used to implement the 
grandmap, providing a means of looking up atoms by their I-stream addresses. 
As its name suggests, the granfilade is an enfilade. 
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The index space used by the granfilade is I-stream tumbler space. The wid 
of a granfilade crum is a tumbler specifying the span of I-space beneath the 
crum (i.e., the distance, in tumbler space, from the first to the last bottom 
crum descended from it). The widdative function is tumbler addition, therefore 
a crum's wid is simply the tumbler sum of its children's wids. Bottom crums 
have an implicit wid of 0.0.0.0.1 (i.e., spanning no nodes, no accounts, no 
orgls, no V-spaces and spanning a single atom). Granfilade disps are tumbler 
offsets in I-space from the parent crum. 

Bottom crums in the granfilade represent atoms. Atoms come in two 
varieties: characters and orgls. Character bottom crums are stored as spans of 
characters, rather than individual bytes. These consist of a pointer to a 
block of physical storage, either in core or on disk, containing the bytes 
themselves, and an (integer) length, telling the number of bytes in the block. 
Since each of these bytes has an implicit wid of 0.0.0.0.1, the character span 
has a wid of O.O.O.O.<number of characters in the span>. Orgl bottom crums are 
stored in a similar fashion, but instead of literal data bytes, pointers to the 
fulcrums of orgls (poomfilades) are stored. 

To obtain the atom associated with a particular I-stream address, an 
enfilade retrieve operation is performed (see accompanying paper on enfilade 
theory). Starting with the fulcrum, the wid is subtracted from the desired 
I-stream address, and the child crum is selected whose disp comes closest to 
the modified I-stream address without going over it. The process is then 
repeated with this child crum and the modified I-stream address as the targe~. 
At the bottom, the (by now much reduced) target address is used as an index 
into the appropriate character or orgl span to select the desired atom. It is 
quite possible to find that there is no bottom crum associated with a given 
I-stream address, since tumbler space is porous (i.e., between any two tumblers 
are infinitely more tumblers). 

Although the grandmap is said to simply map from I-stream addresses to 
physical storage locations, a retrieval operation on the grandmap may involve 
looking up the disk locations of the atoms in the granfilade, bringing the 
atoms themselves from those locations into core, and then returning the core 
addresses. This is something more than a simple lookup operat10n. 

In practice, retrieves are performed upon a whole span at once, returning 
a number of atoms (which is specified in the retrieve request) starting at the 
given index space location. The length of the span to be retrieved is also a 
tumbler, due to the porosity of tumbler space. 

The only operations performed upon the granfilade are retrieve and append, 
although there are an infinite number of potential places to append to (one 
such place for each possible V-space or each possible invariant orgl id). The 
granfilade is never cut, deleted from or rearranged. It simply accretes data 
monotonically, and then allows it to be quickly regurgitated. For this reason, 
it is quite reasonable to store the bottom and interior crums of the granfilade 
on an unchangeable medium, such as write-once optical disks. 

THE POOMFILADE 

The second major data structure inside the system is the poomfilade. 
~he poomfilade is used to implement orgls. POOM stands for Permutations On 
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Ordering Matrix. The poomfilade represents something functionally similar, 
though not identical, to a permutation matrix: a sparse binary matrix in 
tumbler space, one axis of which represents the V-stream and the other the 
I-stream. A "1" at a given coordinate indicates that the orgl realized by the 
matrix maps that coordinate's V-stream axis location to and from its I-stream 
axis location. A "0" indicates that no such mapping exists. This would be 
a permutation matrix but for virtual copies, which result in a mapping between 
a single I-stream location and a number of V-stream locations, allowing a given 
I-stream "column" of this matrix to have more than one "I" entry. In addition, 
the previously mentioned porosity of tumbler space results in an infinite 
number of "rows" and "columns" which are all "O"s. 

The index space used in the poomfilade is two-dimensional cartesian 
tumbler space. The disps and wids of poomfilade crums are ordered pairs of 
tumblers representing the positions and extents, respectively, of rectangles in 
this space. The positions (disps) draw their origin relative to the parent 
cmm. The widdative function is construction of the minimum enclosing 
rectangle of the rectangles represented by all the children in a loaf. 

Bottom crums in the poomfilade are identity matrices, representing V-spans 
that map without internal alteration onto I-spans. These are stored as a 
position (disp) along with a single value for extent (since identity matrices 
are, by definition, square). It is not necessary to actually store the "l"s 
and "O"s themselves. . 

Retrievals are performed on the poomfilade using one axis as the indexing 
axis and the other as the data axis. Extracting information consists of 
recursively delving into the boxes represented by the rectangles crossing the 
rows or columns of interest. A rearrange performed along the V-stream axis 
implements the corresponding primitive orgl edit operation (see the 
accompanying paper on the Kanadu system architecture) on the V-stream order of 
the orgl that the poomfilade represents. The other edit operations are 
implemented by manipulating the poomfilade in a siailar fashion. Virtual 
copies are implemented using sub-tree sharing. 

THE DIV POOM 

The DIV poom is an extended design for the poomfilade that is planned 
but not yet implemented. The DIV poom is similar to the poom, but adds a 
third dimension to enable the determination of the orgl of origin of material 
that has been virtually copied. The third dimension is orgl (or "document", 
for historical reasons, hence the "D") of origin of the I-span. Bottom crums 
are still planar identity matrices, but associated with each is a position on 
the I-stream corresponding to orgl of origin for the span represented. Upper 
crums represent three-dimensional bounding rectangular prisms, although the 
enfilade is otherwise the same as the basic poomfilade. 

THE SPANFILADE 

The Xanadu system's third major data structure is the spanfilade. The 
spanfilade is used to implement the spanmap, a mapping from the I-stream to 
the O-stream (the subset of the I-stream whose atoms are ' orgls). 

The spanfilade is similar to the poomfilade in its higher level structure 
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-- crums represent recursively nested boxes, and the widdative function is 
still minimum enclosing rectangle. The bottom crums are different, however, 
as is the interpretation of the axes. 

The two axes represent the I-stream and the O-stream. In addition, the 
data structure is partitioned along the O-stream axis into independent 
segments, each of which spans the entire O-stream but represents the spans 
referenced from a particular V-space (this partioning is like having a set of 
parallel spanfilades, one for each V-space). Such a partitioning enables 
retrievals to be readily restricted to orgls from particular V-spaces. 

Bottom crums represent I-spans referenced by a particular orgl in a 
particular V-space. A Bottom crum contains an O-stream position (relative to 
its parent crum), representing the I-stream address of a referencing orgl, an 
I-stream position (also relative to the parent crum), representing the start of 
an I-span, and an I-span length. The first two of these together constitute 
the bottom cruz's disp, while the third is the crum's wid. 

Retrievals are performed on the spanfilade using I-spans as the indexing 
elements. The result of such a retrieval is a set of I-stream addresses 
corresponding to the orgls which map some segment of the V-stream onto the 
I-span used as the key. 

THE DREXFILADE 

The drexfilade is a much improved deSign for the spanmap which will 
replace the current one as . soon as possible. The drexfilade is also similar in 
flavor to the spanfilade, the poomfilade and the DIV poom (in fact, these are 
all part of a family which we call N-dimensional enfilades, where, in this 
case, N is 2 or 3). It is three dimensional binary matrix, with the three 
dimensions representing the O-stream and the starting and ending I-stream 
addresses of I-spans. Bottom crums are single points (the 1/11/ s of the matrix). 
The interpretation of this matrix is as follows; a point is ulu (i.e., present 
in the data structure) if and only if the I-span it denotes on the two I-stream 
axes is present in (i.e., mapped to in full by) the orgl denoted by its 
O-stream axis position. 

The drexfilade avoids some unfortunate combinatorial problems with the 
spanfilade. It also allows queries about arbitrary patterns of overlap between 
particular I-spans and the spans mapped to by the orgls, in addition to queries 
about simple enclosures. 

THE HISTORICAL TRACE ENFILADE 

The historical trace enfilade is certainly the most complex Xanadu data 
structure. Implementation has therefore been deferred until the more basic 
portions of the system are fully functional. 

The underlying representation of an orgl is a sparse binary mapping 
matrix. Each of the primitive editing operations which the system supports 
rearrange, append, insert and delete -- is expressed as a transformation matrix 
that the poom is multiplied by to obtain the new, edited orgl. Note that the 
initial state of an orgl is a single identity matrix. When an edit operation 
is applied to this identity matrix, the resulting orgl is the transformation 
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matrix for that edit itself. From this it may be seen that each edit 
transformation matrix is in some sense an orgl itself, mapping from the old 
V-stream order of the orgl to the new V-stream order. 

The matrix product of several of these transformation matrices is itself 
a transrormation matrix for a slngle transformation that is equivalent to the 
constituent transformations applied individually. The product of all the 
transformations 1n the history of an orgl (not including alternate versions) 1s 
in fact the orgl itself. 

The history of a phylum consists of the sequence of changes which have 
been made to its orgls over time. In the case of a phylum for which no 
versioning has taken place, this is a linear series or operatiOns. Whenever a 
new version is introduced, the sequence of changes branches and becomes a tree. 
One way of visualizing this is as a wire frame tree with beads strung along the 
wires. Each bead represents a single primitive change to an orgl. It is this 
tree which forms the index space of the historical trace enfilade. There are 
thus two trees to keep in mind: the enfiladic tree -- the data structure itself 

and the tree-shaped index space in which the enfilade resides. 

Locations in the index space -- points in the history of a the phylum -­
are expressed as a path through the history tree. The tree is structured so 
that there are only binary branches. A path can be represented by distances 
(in units of Single edit operations) interspersed with direction changes. If, 
with a binary tree, we follow the convention of always taking, say, the right 
branch unless otherwise directed, a path can be represented as a series of 
distances, between which are implicit left turns. 

An enfilade is constructed in this space by grouping crums over regions of 
the tree (see the attached diagram). Each of these regions bas a slngle 
entrance and zero or more exits. A crum's index wid is the set of paths 
through it to farther siblings. Its index disp is the path to its entrance 
relative to the entrance to its parent. The index widdative function is path 
concatenation. 

The bottom crums of the historical trace enfilade are transformation 
matrices for the individual edit operations. These are quite Simple. The 
~ndex wid of a bottom crum is a Single step along the historical trace. 

In addition to its index wid, each crum also has a data wid. In the 
case of a bottom crum, this is the primitive transformation matrix that the it 
stores. In the case of an upper crum, the data wid is the matrix product of 
the data wids of its children. The data wid of a crum is thus the full 
transformation achieved by traversing the segment of the tree which it covers. 
This is in turn a poomfilade, constructed using sub-trees which are shared with 
the historical trace crum's children's data wids. The historical trace is thus 
an enfilade constructed from enfilades! Note that, because of branching in the 
historical trace tree, a crum aay have a number of matrices in its data wid -­
one for each path across the it. There is a one-to-one correspondence between 
the matrices in the data wid and the paths in the index wid. The data disp 
of an historical trace crum is implicitly the matrix product of the data wids 
of the crum's siblings along the path between the crum and the entrance to its 
parent. 

A retrieval on the historical trace is accomplished by multiplying 
together the data disps of the crums descended through on the way to the bottom 
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crum located at a particular point on the history tree. The result is a poom 
for the orgl that existed at that point in the phylum's history. In practice 
it is not necessary to actually multiply whole matrices together, since the 
object of interest is not the tinal matrix itself but the aapping which it 
represents. It is sufficient to simply aap whatever V-spans are desired 
through each of the disp matrices. This is equivalent to multiplying the 
matrices, but only requires dealing with the particular spans of interest, 
rather than the whole product orgl. 
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Xanadu Hypertext System Implementation 

This document describeshe state of the current Xanadu implementation as 
well as a couple of other miscellaneous aspects of the xanadu system design 
that have no other place to go: the frontend-backend interface and the 
core/disk memory model. 

THE CURRENT IMPLEMENTATION (AS OF APRIL 1, 1984) 

The system currently operates in a dedicated single-user mode. Support 
for multiple users/processes is anticipated as soon as funding permits. 
Multi-user Xanadu will be implemented as a transaction based system. 

The present system supports an older interface paradigm in which orgls are 
separated into two classes called documents and links. Support for orgls 
in the sense that they are described in these documents will entail a change to 
the interface layer but not to the system proper. 

The present implementation uses the older spanfilade and poomfilade 
designs (described above) rather than the newer drexfilade and DIV poom. In 
addition, as was mentioned earlier, historical trace has not yet been 
implemented. 

Tumblers are currently stored internally using a fixed-size structure, 
rather than using the variable-length humber representation described here. 
This results in a substantial storage use inefficiency. 

The single-user backend is written in C and runs under the Unix family of 
operating systems. The code,· however, uses a minimum of operating system 
services and was written with portability in mind, so transfer to other systems 
is relatively straightforward. Multi-user will by necessity be somewhat more 
system dependent, but that limitation bas not yet arrived. 

THE PRONTEND/BACKEND INTERFACE 

The Xanadu system makes a strong distinction between the data storage, 
retrieval and organizational functions and tbe user interface, display 
management and data formating functions. Tbe latter are the responsibility of 
a separate frontend. The frontend is a program that runs as a separate 
process, possibly on a separate computer, and accesses the capabilities of the 
backend via some sort of data communications line or I/O channel. The 
backend implements the functions described in this set of documents in as 
application independent a fashion as possible. 

The backend and the frontend interact via an interface language called 
Phoebe. This language allows programs to express requests to the backend to 
perform any of the functions described in these documents. The backend then 
responds with the requested data, or by performing the requested manipulation 
and returning an indication of whether or not it was able to do what was asked. 
The full interface language specification is not yet complete since our 
conception of the virtuality of the system has recently changed and the 
interface is being redesigned to take advantage of this. The interface 
protocol for the older virtuality is the one recognized by the current 
implementation. This protocol is described in one of the attached documents. 



Apr 25 12:46 1984 -- V -- xanadu System Implementation -- Page 2 

Phoebe will be described in detail in a future document. 

THE CORE/DISK MEMORY MODEL 

The present design assumes a two-level memory model: the hardware upon 
which the system is running has a limited quantity of high speed, random 
access memory which is immediately accessible, which we call core, and a much 
larger quantity of slower, less immediately accessible memory, called disk. 
The terms "core" and "disk" are chosen for convenience, and do not necessarily 
reflect the technology used to realize them. 

Core is assumed to be a limited resource, restricted to a relatively small 
aaount (e.g., a few megabytes per active process). Disk is not so constrained, 
and the model assumes that the amount of disk storage available is effectively 
unlimited. This is not to say that the system requires an infinite amount of 
disk space, but merely enough to contain all of the data that it is being asked 
to manage. 

The contents of all of the system's data structures are stored permanently 
on disk. As used, they are also moved into core. All reading into core and 
writing out to disk is under the system's direct control. Swapping occurs at 
the data structure level, therefore use of a traditional demand-paged virtual 
.emory system is not advantageous. The general rules for managing core storage 
are 

1) all alterati~ns to data structures must be performed in core, 
2) if a crum is in core, then all of its ancestors must also be there, 
3) within the above two constraints, try to keep as much aaterial in 

core as possible. 

Core is assumed to be less than totally reliable, in the sense that a 
system crash may cause any information stored there to be lost. Disk is 
assumed to be more reliable, and care is taken to ensure that the sequencing of 
transfers between core and disk preserves the integrity of data stored on 
disk. This in turn helps ensure that system failures leave the disk in a 
consistent state so that recovery is possible. The procedure for changing data 
stored on disk is: first, bring the data into core; second, perform the actual 
change: third, write a new copy out to diSK; and finally, after verifying that 
what was written to disk was correct, write out to disk some indication that 
the new copy is now the active one. 

The optimum procedure for managing core use in an environment that already 
has an underlying virtual memory mechanism is unclear. We feel that the 
Xanadu system itself can anticipate its own storage requirements and decide 
what to swap and when to swap it better than the algorithms used in typical 
demand-paged virtual memory systems. In some systems, however, it may not be 
practical to "turn off" the virtual memory. The best course in such a case is 
a matter for further study. 
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Xanadu Hypertext Virtuality 

This document describes the Xanadu Hypertext virtuality -- the way it 
appears to outside users and the conventions we have established to make it 
appear that way. 

The Kanadu virtuality is based on two primitive organizational structures: 
documents and links. A document represents some set of data, while a 
link represents a meaningful connection between some data in some documents. 

A document consists of an ordered collection of characters together with 
an ordered collection of links. This is represented by an orgl. A document 
orgl's first V-space, called the text space, contains (only) characters. Its 
second V-space, called the link space, contains (only) links (described 
below). It does not have any other V-spaces. 

A link consists of three ordered sets of spans of characters and links 
inside documents. These sets are called end-sets. The first of these three 
end-sets is called the from-set and the second is called the to-set. The 
link represents a directional connection from the material in the from-set to 
the material in the to-set. The third end-set is called the three-set and 
designates material pertaining to the nature of the link itself (i.e., what 
type of link it is or why it is there). Like a document, a link is represented 
by an orgl. A link orgl has three V-spaces, one for each end-set. These 
V-spaces are unconstrained as to what type of atoms they should contain. It 
is conventional, however, to structure link retrieval requests to ask the 
V-stream addresses of the contents of the end-sets, rather than asking for the 
atoms themselves. This is because a link represents a connection from one 
place (or set of places) to another, in addition to representing a connection 
from one set of atoms to another. 

By convention, the first thing in a link's three-set represents a link 
type. Link types are represented by standardized, conventionally agreed upon 
V-stream addresses. The number of possible link types is unlimited, but a few 
standard types are defined by convention for the purposes of storing and 
organizing literary information. For example: 

Jump link -- represents a simple connection from one place to 
another. A jump link indicates that such a connection exists. The major use 
of a jump link, as its name suggests, is to designate a possible jump from one 
body of material to another. 

Quote link -- represents a quotation. The material in the to-set is 
embedded at the location defined by the first element in the from-set. This 
allows a quoted material to be expanded in its original context from quoted 
fragments. 

Footnote link -- represents a footnote. The material in the to-set 
represents footnote-like commentary on the material in the from-set. The 
frontend may choose to display the to-set like a printed footnote by showing 
th text in the to-set at the bottom of the screen. The footnote link is 
intended to be used by the authors of documents to point t digressve matrial 
just as print footnotes are used. 

Marginal note link -- represents a note "scribbled in the margin". 
A marginal note link is similar to a footnote link, but is intended to be used 
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by the readers of a document to point at reader created commentary on the 
material linked from. It may be desirable for frontends to disply marginal 
notes differently, as well. Also, it may be desirable to restrict retrieval of 
marginal note links to those with specific authors, whereas one probably wishes 
to retrieve footnote links in a less restricted manner. 

Other useful link types are certainly possible, and what these should be is a 
matter to be settled between the designers of frontends and the users of 
system. Various kinds of semantic intent could be indicated by link types, in 
addition to regulating display and retrieval functions (e.g., by allowing the 
link type to indicate a perceived contradiction or agreement between the 
contents of the from-set and the to-set). Additional link types may also be 
desirable in order to support non-text or non-literary applications. 

The model for this virtuality is an abstraction of what we feel are the 
tundamental underlying mechanisms of common paper-based literature systems 
(e.g., "the scientific literature"). Such generally consist of a corpus of 
writings -- documents -- in the form of papers, articles, book, tcialrrt, esonde 
explicit and implicit connections -- links -- such as citations, references, 
quotations, bibliographies, "in jokes", etc. "Electronic literature" is the 
primary application or which the Xanadu system was designed. It is our belief 
that, in order to supplant paper-based systems, electronic systems must 
preserve and enhance the capabilities already present in paper in addition to 
providing new capabilities hitherto not widely used. 
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Future Directions for Development of the Kanadu Hypertext System 

This document describes future work to be done on the system to bring it 
from its current state as a fragile, partially functional single-user, single 
processor prototype to a robust, full-fledged, multi-user distributed system. 
Some of the tasks described here are necessary before the system will be 
minimally usable. Other tasks lead to more advanced functionality. The tasks 
are listed roughly in order of priority, but the actual order of implementation 
may vary depending on funding and customer priorities. Each task includes a 
description, a justification and a very rough estimate of the level of effort 
required to complete it, given the present type of development environment 
(programming in C under the Unix operating system). 

Fix the various known bugs in the present system: 
There are a few things that are just plain wrong and need to be corrected. 

In particular: links currently do not follow through to versions; there are 
some garbage collection glitches, especially when things get complicated; there 
used to be a persistent off-by-one error deep inside the code which was fixed 
and several places that worked by compensating for it themselves are now 
broken. At this time, none of these bugs are serious, in the sense that they 
interfere with the current capabilities of our demonstration system. They will 
become more important as work on the system proceeds. We estimate that these 
wIll be fixed in the course of debugging the system as a whole. 

Modify to use variable-length tumblers: 
The current fixed-size representation requires 40 bytes for each and 

every tumbler used in the system. Conversion to variable length will reduce 
this considerably. Most tumblers are quite small and in the variable-length 
format will require as few as 3 bytes. This will tremendously increase disk 
and memory efficiency. It will also speed things up because the amount of 
processing that may be performed in-core without swapping to disk will be 
increased. Also, any given operation on the data structures will have fewer 
bytes to shuffle. We have devised a plan for making the transition to 
variable-length tumblers in several independent steps. The first step involves 
modification of the low-level tumbler routines to handle tumblers in either 
format. Mext, the various higher-level routines get converted one-by-one to 
use the variable-length format. Once the correctness of these modifications 
is verified, the fixed-length capabilities are finally removed from the low­
level tumbler routines. This is a fairly involved process and may take a 
couple of man-months. 

Install the drexfilade and the DIV poom: 
These improved data structures are needed to permit realization of the 

full virtuality of our design. Portunately, the higher level routines for 
N-dimensional enfilades, which the current spanfilade and poomfilade share, can 
also be used with little or no modification for the drexfilade and DIV poom. 
The lower level routines, which ·deal with bottom crums, and the routines which 
actually use the data structures to respond to requests will, of course, need 
to be modified. Conversion will be a tNo step process. The first step 
involves installing the new data structures and getting the system to work as 
it did with the old data structures. The second step involves adding the 
functionality which the new data structures provide that the old did not. 
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These two steps together will probably require several man-months. 

Specify and implement the new frontend/backend interface protocol ("Phoebe"): 
A new protocol is required to reflect recent important changes in the 

system virtuality. Before the beginning of this year the notions of document 
and link were deeply embedded in the system design. In particular, the current 
frontend/backend interface protocol reflects the restricted functionality 
provided by documents and links rather than the more generalized functionality 
provlded by unconstralned use of orgls. The recent generalixation to orgls 
soaewhat reduces the range of possible requests that the frontend can give to 
the backend, but the remaining requests become much more complex. In addition, 
the conversion from the spanfilade to the drexfilade greatly increases the 
number of different kinds of restrictions that may be applied to retrieval 
operations. 

Specification of a new protocol will involve an in-depth examination of 
the capabilities of the new virtuality in order to determine a set of requests 
that provides access to all of the system's capabilities without undue 
complication. Once the request set is determined, the format of the requests 
themselves and the grammar for the interface language will have to be designed. 

Implementation of the new protocol will involve the construction of a new 
input parser for the backend and a nearly complete rewrite of those high-level 
routines directly responsible for fielding requests. 

Both the specification and the implementation will be fairly large 
undertakings. We estimate a month for specification: a week to get the ideas 
sorted out, a week to figure out the request set, a week to design the grammar 
and a week to write it all down. Specification of the interface is a necessary 
precursor to much frontend work. Implementation will take somewhat longer: 
a few weeks to code and debug the parser and a month or aore to rewrite the 
request handling routines. Implementation of the new protocol need not follow 
i .. ediately upon completion of specification. 

Optiaize code around bottlenecks: 
The system was implemented with a greater emphasis placed on things that 

could be readily made to work with the proper algorithmic efficiency, rather 
than on things that were efficient at a low level. As a consequence there are 
some pieces of code that are clear, correct and understandable and horribly 
slow. Some performance studies need to be done in order to find out where the 
real bottlenecks are. We have been hampered in conducting such studies by the 
state of the current release of Unix on our computers, in which the performance 
analysis and profiling tools do not work correctly. Performance studies have 
therefore been deferred until a newer release of the operating system software 
becomes available. The actual work of streamlining our system is an ongoing 
task. As with any complex system, there is a bottomless list of things that 
can be done to speed it up. 

Implement the historical trace facility and design the protocol to use it: 
Historical trace is a separable piece of the system, in the sense that 

the system will work without it. Implementation was therefore deferred until 
the rest of the system worked. Historical trace can be accomplished in two 
stages. In the first stage we build the historical trace tree with the 
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individual reversible edit changes at the bottom of the data structure but 
without the higher level aggregate matrices. This results in a simple 
branching edit log allowing retrieval of any version by tracing the individual 
edits in sequence from the current orgl. This works, albeit very slowly. In 
the second stage we erect the higher level data structure and speed things up, 
at the price of greater complication. The first stage, called slow historical 
trace, is relatively straightforward and can probably be accomplished in a 
month or two. The second stage, fast historical trace, is a major project 
and may require several months. Once slow historical trace is in place and the 
interface protocol is designed to use it, implementation of fast historical 
trace will be transparent to the user (except that it will be faster, of 
course). It is likely, however, to be somewhat challenging to implement. 

Develop version archiving and "garbage collection" facilities: 
Material stored in the xanadu system accretes monotonically. Mechanisms 

must be developed to identify unreferenced or little used material and reuse 
the space it occupies while archiving it in some sort of low-cost long-term 
storage. Mechanisms to allow material to be permanently discarded may also be 
desirable. In addition, storage and time inefficiencies are introduced by orgl 
fragmentation as a result of SUbstantial numbers of edit changes. One way of 
dealing with such fragmentation ist make a "cleancopy"of the material in 
the orgl at some time "t ll and then provide an orgl aapping from V to V(t) (the 
V-stream order at time "t") in addition to the mapping from V to I. The major 
unresolved issue is the mechanism for deciding when a "clean copy" of some orgl 
should be made. Facilities such as these need to be both designed and 
implemented. For the first pass, we estimate a month to analyze the underlying 
problems and design solutions. The length of time required to realize the 
resulting design is unclear, but we guess that it would be on the order of a 
few months. 

Implement multi-dimensional orgls: 
In the present design, orgls represent linear (i.e., one-dimensional) 

collections of atoms. The generalization of the underlying data structures to 
higher dimensions is straightforward, but the implications of dOing this are 
not clear. Further study is required to determine the desired virtuality for 
such a system and the protocols for controlling it. We estimate a few months 
of study and design work, and an unknown (but certainly greater) amount of 
implementation work. 

Implement support for multiple-users: 
This is essential. It is also the biggest single task in the list of 

tasks so far. The implementation of multi-user Xanadu will involve a greater 
degree of operating system dependence than is found in the present system. Our 
present notions of how to proceed are based upon 4.2 bsd Unix as the 
anticipated host operating system. CUrrent plans call for multi-user xanadu to 
be implemented as a transaction-based system. The idea is to split backend 
requests into series of the simplest possible primitive transactions which 
involve in-core data structure operations. These operations don't involve 
interaction with disk storage. Disk accesses are handled by xanadu's virtual 
memory manager. A number of host dependent design issues are partially 
unresolved, and will remain so until the host environment is determined. These 
include: 

-- What is the most appropriate memory management scheme for the 
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backend, given the host system's own underlying memory management? In 
particular, how do we go about sharing memory between processes? 

-- What is the most appropriate way to deal with multi-processing in 
the backend? In particular, should the backend be split into several separate 
processes, and if so, how? 

-- The complete mechanisms to handle berts must be designed. 
-- Access protection and authority control mechanisms must be designed. 

Once the complete multi-user system is designed, it must then of course be 
implemented. We estimate a month to study the host system, two months to 
design and specify the multi-user backend work, and six months to implement it. 
However, such time estimates are, at best, educated guesses at this stage. 

Various design improvements and corrections: 
There are a few things which we would like the system to do that the 

present design cannot. We have ideas as to how these various problems can be 
solved, but the ideas need to be refined. For example: 

-- It cannot distinguish between the "original" of some material and a 
virtual copy if both the original and the copy are in the same orgl. This 
problem derives from the fact that virtual copies are made of I-spans, whereas 
they are referred to externally in terms of V-spans. The DIV Poom was the 
first step to solving this problem: in the original design, there was no way to 
distinguish between the original and the copy at all, even if they were in 
different orgls. The third axis of the DIV poom encodes the orgl of origin of 
a V-span (as opposed to the orgl of appearance). However, this does not 
enable us to determine where in that orgl the span came from, since this is 
potentially variable. Two possible ways of solving this problem are to change 
the way I-stream space is structured to embody a difference between copies of 
things, or to somehow dynamically keep track of how the V-stream address of a 
span shifts over time. Neither of these solutions is very well defined right 
now. 

-- The system does not deal with the time dimension of material very 
well. In particular, we would like to be able to perform restricted retrievals 
using time as one of the dimensions of restriction. It seems like it would be 
relatively straightforward to time-stamp orgls as to their time of origin and 
most recent time of change. Adding time-wids to granfilade crums would also 
aid in filtering retrievals. As with the previous example. there appear to be 
things that we can do. but they need much more thought. Dealing effectively 
with the time dimension is something that we feel will be essential to many 
applicatiOns of the system. 

-- There is undoubtedly a lot of tuning and refining that can be done 
to make things more efficient. We do not assume that our architecture is 
optimum. 

These tasks are, by their very nature, rather vague and open-ended. Much 
of the work to be done in this category involves solving unsolved design 
problems. It is difficult to estimate how long this will take when the 
result is, by definition, not known. We do, however, have some ideas about how 
to proceed on some of these problems and feel that they are not insoluble. The 
design work listed here is perhaps best categorized as "ongoing". 

Develop "semi-distributed" network support: 
The "grand plan" for xanadu involves a large, highly distributed network. 

This will not be readily accomplished, but we believe that an intermediate step 
to this, which we call "semi-distributed", is more feasible. Semi-distributed 
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networking involves distributing the functionality of a single-node Xanadu 
backend over several computers "tightly" coupled by a LAN. Each of the 
elements in this system would take responsibility for storing and managing 
parts of the different data structures, with one central machine acting as 
coordinator and request dispatcher. Orgls, being independent of one another, 
can be spread over several machines. The granfilade would reside on a central 
machine, though the data at which the granfilade points could be spread over 
several machines. The spanfilade, though it needs to be a centralized 
resource, could certainly be given a CPU of its own too. All of this is 
another large bite to chew. We guess a month or so to design it and many more 
to implement it. 

Research into more advanced uses for enfilades: 
The enfilade data structure paradigm used to realize the components of the 

Kanadu system has, we believe, additional uses. We have examined ideas for 
enfilades that would be helpful in such diverse applications as computer 
graphics, air traffic control, molecular engineering and relativistic physics. 
While the degree of rigorous analysis that has been performed in any of these 
fields is minimal, informal examination suggests that a closer look would be 
fruitful. At the present time this is an ongoing low-level effort and will 
undoubtedly continue as such. 

Develop "fully-distributed" network support: 
"Fully-distributed" networking implies large numbers of loosely coupled 

systems each functioning without centralized control and without necessarily 
having full knowledge of the complete network topology. This clearly involves 
solving a lot of problems that are at the forefront of research into 
distributed processing. Much further development work will be required before 
fully-distributed networking -is possible. We don't care to even try to guess 
how long this will take, if it is possible at all. It is a problem we would 
like to work on. 

We feel that much of the present work being done in the field of 
distributed data processing does not address the fundamental problems of 
network-based storage. Mainstream research in this field seems to concentrate 
on the problems of deadlock avoidance and the maintenance of data integrity. 
The Xanadu mechanisms of berts and versioning Side-step these problems 
entirely. We feel that the hardest problems in distributed data storage have 
to do with the questions of how a node in the network determines where 
non-local data is to be found and how it determines how best to route its 
queries through the network in the absence of less than perfect knowledge of 
the network layout. In the Xanadu system this involves the problems of 
determining the existence and locations of remote links to, and remote versions 
of. local orgls and keeping track of who elsewhere knows about changes made 
locally. Our enfilade paradigm hints at some potential solutions to these 
problems: wids and disps may be viewed as a mechanism for representing partial 
knowledge. Some sort of enfiladic structure might be constructed to allow a 
Kanadu network node to maintain a representation of the overall network 
topology and of the contents of other nodes without requiring that the node 
have complete knowledge of everything that is happening elsewhere. We are fond 
of an analogy to the Hindu "Web of Indra", an infinite, intricate latticework 
of jewels in which each facet of each jewel holds a reflection of the whole 
lattice, including the reflections of the whole in the faces of all the other 
jewels. 
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Analysis of the Memory Usage and Computational Performance of the Kanadu System 

ABSTRACT: Well golly. It's log. What else is there to say? 

This document analyzes the theoretical performance of a multi-user Xanadu 
backend, constructed according to our present plans, in terms of memory (core 
and disk) consumption and computational requirements. It also discusses, 
briefly, the performance of the present implementation and how this performance 
differs from the most current design. 

Memory/CPU Overhead 

The current design for a multi-user xanadu system calls for multiple 
processes in the backend processor to share a common segment of core memory 
which willcontain the in-core portiOns of the enfiladic data structures. 
Modifications to these data structures are permitted only under the umbrella of 
serializing transactions. Each transaction represents a single primitive 
operation on the data structures and is executed in an uninterruptable block of 
computation during which time the other processes are excluded from looking at 
or themselves modifying the system enfilades. Reading from disk is performed 
by Kanadu's underlying virtual memory manager when a process attempts to read a 
piece of some data structure which is not in core. Writing to disk is also 
the job of the virtual memory manager, and occurs when unused portions of the 
data structures are swapped out of core to make room for things being read in 
or when a process requests the virtual memory system to checkpoint its state. 

~he data structures required in-core for system operation are the 
granfilade (including the atoms its bottom crums date, the spanfilade and 
some number of poomfilades. However. only certain parts of these data 
structures need be core-resident at any given time. An operation performed on 
the data structure reads or modifies certain bottom crams and their ancestors. 
and only those branches of the trees which are are currently being used need be 
kept in core. 

Enfilades are, in general, said to be logarithmic with the number of data 
items stored. in terms of both time to perform the various primitive operations 
and in terms of data structural storage overhead. Like many generalizations, 
this one is not completely correct. Storage overhead is logarithmic. 
However, certain multi-dimensional enfilades have non-logarithmic factors in 
the times required for certain useful retrieve and edit operations. These are 
discussed in more detail in the companion paper on enfilade theory. The worst 
case involves a term varying as the square root of a measure of orgl size, but 
we are not sure of the consequences of such non-logarithmicities in terms of 
system performance on typical documents. We believe that they are not a 
significant source of inefficiency. 

OUr memory management scheme requires that crums in core (i.e .• the 
.Iactive" crums) be accompanied by all their ancestors. The volume of the 
ancestor crums, as mentioned above, grows as the logarithm of the number of 
bottom crums in the whole system. Thus, core requirements vary as the product 
of the number of bottom crums in use with the logarithm of the total number of 
bottom crums in the corresponding enfilade(s). The amount of disk swapping 
over time will be directly proportional to the amount of change in the set of 
active bottom crums,which is effecvy constant for a given number of users. 

The regularities of enfilades and their associated algorithms invite the 
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design of a memory management system that takes explicit account both of disk 
blocks and of the (somewhat different) tree-structures in core. Thus, we think 
that Xanadu's virtual memory manager can make more astute judgements about what 
to swap to disk than can a more general page-oriented virtual memory scheme. 
If Xanadu is installed on a system with such a virtual memory mechanism 
underneath, then it will need to know how much core it really has to work with. 
We are not sure how our virtual memory scheme would interact with those of 
list-oriented systems, since we are not current in our knowledge of 
list-oriented virtual memory techniques. We will undoubtedly learn about these 
if we work such systems to any significant extent. 

Subtree sharing is used in multi-versioning orgls so that the common 
portions of different versions are stored in common. We believe that different 
versions of a given piece of material will have significant commonality and 
thus that subtree sharing will substantially reduce memory consumption. The 
exact degree of savings realized depends on the degree of commonality between 
versions which in turn depends upon the data being stored and on how the 
versions differ. Tradeoffs involving subtree sharing can better be studied 
when a fully operational system is available, since we can then see how people 
actually use it. 

I/O OVerhead 

The Xanadu system makes use of two types of input/output (I/O). These are 
disk-block I/O, for data retrieval and long-term storage (via the virtual 
.emory mechanism), and character I/O, for interaction with the frontend. 

The frontend/backend interface is designed to minimize backend character 
I/O. The backend transmits requested data to the frontend in a terse format 
and does not concern itself with screen management or data display functions, 
since these typically require substantial computational overhead and I/O 
bandwidth. 

The CUrrent Implementation 

Although the present system implementation has the basic algorithmic 
efficiency described above, it is inefficient in many low-level ways. We 
believe that, in general, optimization is best left until one has a working 
system to optimize. Many of the data structures now contain data which is 
redundant or stored in a wasteful aanner. For example, it is common to use a 
full-word integer -- four bytes -- to store a one-bit flag. This would be 
changed in a production system, but makes sense in a development system because 
it simplifies the code by eliminating the need to twiddle individual bits. 
This in turn makes it easier to get the system working in the first place. 
Many data objects which are inherently variable in size are now stored in 
fixed-size chunks of memory which are typically much larger than required for 
the average object. For example, all tumblers are now 40 bytes long, but a 
typical tumbler will only occupy a fraction of this space in a variable-length 
implementation. 

A single C struct is used to represent the upper crums of all three 
types of enfilades. This struct occupies 220 bytes in core and 164 bytes on 
disk. For storage on disk, the crums are packed into a struct which represents 
an entire loaf. The disk loaf struct is 100. bytes long and contains 6 crums. 
The packing factor was chosen to enable a loaf to be stored in a single 
l024-byte disk block. A cram is read into memory together with its sibling 
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CrumB, since disk blocks are read as wholes. To read in a bottom crum thus 
requires up to 6*220=1320 bytes times the depth of the enfilade. This in turn 
is the base-6 logarithm of the number of bottom crums in the whole enfilade. 

Granfilade bottom crums contain either characters or orgls. A character 
bottom crum may contain up to 800 characters. An orgl bottom crum contains a 
single orgl pointer. This is in turn a struct which can hold both a core 
address and a disk address. The disk address is the permanent location of the 
fullcrum of an orgl on disk. The core address is the location in core of the 
core-resident fullcrum, if one exists (i.e., if the orgl is in core). The 
core location is null if the orgl has not been brought in from disk. Although 
up to 800 characters may be packed into a granfilade character bottom crum, no 
effort has been made to similarly pack orgl bottom CrumB. This is another 
source of inefficiency that can be easily corrected when appropriate. 

Spanfilade and poomfilade bottom crums differ little from upper crums, 
but (like granfilade orgl bottom crums) are not tightly packed when on disk. 

Miscellaneous Issues 

The present prootype implementation spends a signican frction of its 
~PU time in a few low-level routines that perform tumbler comparison and 
tumbler arithmetic: these account for between 30% and 50' of the systemts total 
CPU usage. Though simple, these operations are heavily used. Further, they 
require a procedure call and return each time they are invoked, and involve 
data types which are not supported by the underlying hardware. These 
characteristics make the tumbler operations good candidates for implementation 
in microcode. 

Another support function that consumes a lot of computational overhead is 
storage allocation and free-space management (involving both core and disk 
space). The present scheme 1s modeled on Unix's storage allocation facilities, 
but was implemented from scratch since the Unix facilities try to gobble up 
all of the available core in the system and then blow up when they run out of 
space. The Unix storage allocation mechanism also requires an excessive 
amount of storage overhead when. as in our system. very large numbers of small 
pieces (i.e .• a few bytes each) are being allocated and freed with great 
frequency. OUr present storage manager is modelled after Unix's, so that 
it is not an improvement over the Unix storage manager in this respect. There 
are many possible techniques for dealing with storage allocation that are 
better adapted to dealing with small pieces. For larger pieces. a scheme using 
a doubly-indirect index through a table to ease compation of storage may be 
most appropriate. This would resemble the system used in Smalltalk-SO (insert 
reference). 
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xanadu Hypertext System Frontend/Backend Interface 

This document describes the current (April 1, 1984) Xanadu 
frontend/backend interface language. This document also is in the form of a 
BNF for the language with annotations describing what the various pieces are 
for. 

Formats for information exchanged between the backend and the frontend: 

<wdelim> ::= '\n' 

The newline character is used throughout the protocol as a general purpose 
delimiter. 

Tumblers: 

<tumbler> 
<texp> 
<tumblerdigit> 
<tdelim> 

::= <texp> <tumblerdigit>* <wdelim> 
: : = <integer> 
::= <tdelia> <integer> 
: : =-

Tumblers are denoted by period separated strings of integers. 

Addresses: 

<doc id> 
<doc-set> 
<link id> 
<doc vsa> 
<span-set> 
<span> 
<spec-set> 
<spec> 

<vspec-set> 
<vspec> 
<vspan-set> 
<vspan> 
<ndocs> 
<nspecs> 
<nvspecs> 
< nspans > 

: :c 
: : z: 

: : = 
: =-
: :-
: :-= 
: : = 
: : .. 
: : c 

: : II: 

: : = 
: : = 
: : = 
: : = 
: : = 
: : = 

<tumbler> 
<ndocs> <doc id>* 
<tumbler> 
<tumbler> 
<nspans> <span>· 
<tumbler> <tumbler> 
<nspecs> <spec>* 
{ 's' <wdelim> <span> } I { 'v' <wdelim> <vspec> } 
/* v for vspec, s for span */ 
<nvspecs> <vspec>* 
<doc id> <vspan-set> 
<nspans> <vspan> * 
<span> 
<integer> <wdelim> 
<integer> <wdelim> 
<integer> <wdelim> 
<integer> <wdelim> 

Addresses come in various flavors. A <doc id> is the V-stream address of 
a document (i.e., an invariant ergl identifier in the new interface model). A 
<link id> is the V-stream address of an atom which happens to be a link. A 
<doc vsa> is a V-stream address of an atom inside some document (i.e., an 
ordinary V-stream address). A <span> indicates a range of addresses and is 
denoted by a starting address tumbler and a length tumbler. <doc-set>s, 
<span-set>s, <spec>s, <spec-set>s, <vspec>s, <vspec-set>s, and <vspan>s are 
various sorts of collections of all of these 
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Stuff: 

<vstuffset> : : I: <nthings> <vthing>* 
<vthing> : :- <text> I <link id> 
<text-set> : : Ie <ntexts> <text>* 
<ntexts> : : 2: <integer> <wdelim> 
<text> : : = <textflag> <ncbars> <char>· <wdellm> 
<textflag> : :- 't' 
<nehars> : ! = <integer> <weI i.> 
<nthings> : : = <integer> <wdelim> 

"Stuff" is the generic term for the various sorts of things tbat can be 
found in a document: text and links. 

Link stuff: 

<from-set> 
<to-set> 
<home-set> 
<link-set> 
<nl ink.s > 

: : = <spec-set> 
: : = <spec-set> 
: : - <spec-set> 
::= <nlinks> <link id>* 
::= <integer> <wdelim> 

Links are generally talked about in terms of their end-sets. 

Calls to the backend: 

CREATENEWDOCUMENT ::= <createdocrequest> 
returns <createdocrequest> "<doc id> 

<createdocrequest> ::= '11' <wdelim> 

This creates an empty document. It returns the id of the new document. 

CREATENEWVERSION ::c <createversionrequest> <doc id> 
returns <createversionrequest> <doc id> 

<createversionrequest> ::= '13' <wordelia> 

This creates a new document with the contents of document <doc id>. It 
returns the id of the new document. The new document's id will indicate its 
ancestry. 

INSERT ::= <insertrequest> <doc id> <doc vsa> <text set> 
returns <insertrequest> 

<insertrequest> ::= '0' <wdelim> 

This inserts <text set> in document <doc Id> at <doc vsa>. The v-stream 
addresses of any following characters in the document are increased by the 
length of the inserted text. 
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DELETEVSPAN ::= <deleterequest> <doc id> <span> 
returns <deleterequest> 

<deleterequest> ::= '12' <wdelim> 

This removes the given span from the given document. 

REARRANGE ::- <rearrangerequest> <doc id> <cut set> 
returns <rearrangerequest> 

<rearrangerequest> ::- '3' <wdelim> 
<cut set> ::= <ncuts> <doc vsa>* 
<ncuts> ::~ <integer> <wdelim> /* ncuts - 3 or 4 */ 

The <cut set> consists of three or four v-addresses within the specified 
document. Rearrange transposes two regions of text. With three cuts, the two 
regions are from cut 1 to cut 2, and from cut 2 to cut 3, assuming cut 1 < cut 
2 < cut 3. With four cuts, the regions are from cut 1 to cut 2, and from cut 3 
to cut 4, here assuming cut 1 < cut 2 and cut 3 < cut 4. 

COpy ::- <copyrequest> <doc id> <doc vsa> <spec set> 
returns <copyrequest> 

<copyrequest> ::- '2' <wdelim> 

The material determined by <spec set> is copied to the document determined 
by <doc id> at the address determined by <doc vsa>. 

APPEND ::~ <appendrequest> <text set> <doc id> 
returns <appendrequest> 

<appendrequest> ::= '19' <wdelim> 

This appends <text set> onto the end of the text space of the document 
<doc id>. 

RETRIEVEV ::= <retrieverequest> <spec set> 
returns <retrieverequest> <vstuffset> 

<retrieverequest> ::= '5' <wdelim> 

This returns the material (text and links) determined by <spec set>. 

RETRIEVEDOCVSPAN ::= <docvspanrequest> <doc id> 
returns <docvspanrequest> <vspan> 

<docvspanrequest> ::= '14' <wdelim> 

This returns a span determining the origin and extent of the V-stream of 
document <doc id>. 
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RETRIEVEDOCVSPAHSET ::= <docvspansetrequest> <doc id> 
returns <docvspansetrequest> <vspanset> 

<docvspansetrequest> ::= 111 <wdelim> 
<vspanset> ::- <nspans> <vspan>* 

This returns a span-set indicating both the number of characters of text 
and the number of links in document <doc id>. 

MAKELINK ::- <aakelinkrequest> <doc id> <doc vsa> <from set> <to set> 
returns <makelinkrequest> <link id> 

<makelinkrequest> ::= 14 1 <wdelim> 

This creates a link in document <doc id> from <from set> to <to set>. It 
returns the id of the link made. 

PIHDLIKKSFROMTO ::~ <linksrequest> <home set> <from set> <to set> 
returns <linksrequest> <link set> 

<linksrequest> ::- 111 <wdelim> 

Thisrturns a It of al lins which are (1) in <home set>, (2) from all 
or any part of <from set>, and (3) to all or any part of <to set>. 

FINDNUMOFLINKSFROMTO ::= <nlinksrequest> <home set> <from set> <to set> 
returns <nlinksrequest> <nlinks> 

<nlinksrequest> ::= 16 1 <wdelim> 

This returns the number of links which are (1) in <home set>, (2) from all 
or any part of <from set>, and (3) to all or any part of <to set>. 

FINDNEXTNLINKSFROMTO ::= <nextnlinksrequest> <from set> <to set> <home set> 
<link id> <nlinks> 

returns <nextnlinksrequest> <linkset> 

<nextnlinksrequest> ::~ '8' <wdelim> 

This returns a list of all links which are (1) in the list determined by 
<from set>, <to set>, and <home set> as in FINDLINKSFROMTO, (2) past the link 
given by <linkisa> on that list and, (3) no more than <n> items past that link 
on that list. 

RETRIEVEENDSETS ::= <retrieveendsetsrequest> <spec set> 
returns <retrieveendsetsrequest> <from spec set> <to spec set> 

<retrieveendsetsrequest> ::= 126' <Ndelim> 
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<from spec set> ::c <spec set> 
<to spec set> ::- <spec set> 

This returns a list of all link end-sets that are in <spec set>. 

SHOWRELATIONOF2VERSIONS ::- <showrelationrequest> <spec set> <spec set> 
returns <showrelationrequest> <correspondence list> 

<showrelationrequest> ::= '10' <wdelim> 
/* this is a wild guess at the vague form of the response */ 
<correspondence list> ::c <ncorresponences> <correspondence>* 
<corresponence> ::= <item> <item> 
<item> ::= <doc id> <vspan> 
<ncorrespondences> ::= <integer> <wdelim> 

This returns a list of ordered pairs of the spans of the two spec-sets 
that correspond. 

FIHDDOCSCONTAINING ::= <docscontainingrequest> <vspec set> 
returns <docscontainingrequest> <doc set> 

<docscontainingrequest> ::= '22' <wdelim> 

This returns a list of all documents containing any portion of the 
aaterial included by <vspec set>. 

NAVIGATEONHT ::= <navigateonhtrequest> <totally undefined> 
returns <navigateonhtrequest> <totally undefined> 

This re-edits a document to any point in its editing history. 
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xanadu Hypertext Source Code Annotations 

This document describes various aspects of the C source code for the 
current implementation of the xanadu Hypertext System backend. This document 
is intended as a guide and reference for people examining the source and 
readers may find parts of it to be fairly meaningless without a copy of the 
backend source as a companion document. 

CODING CONVENTIONS 

The Xanadu backend is written in C and we try to follow a fairly small set 
of coding conventions. 

Identifiers -- we use long identifiers for the names of functions and 
global variables. The purpose of long identifiers, in our estimation, is not 
merely to avoid the use of cryptic abbreviations but to enable an identifier to 
contain a complete phrase or sentence fragment describing the thing identified. 
Por example, a tunction to retrieve end-sets from the spanfilade would be named 
retrieveendsetsfromspanfilade in preference to, say, retspanfends. The 
purpose of this convention is to Bake the code more self-documenting. Long 
identifiers are used in preference to descriptive comments at the beginning of 
each function. There are two reasons for this: first, coaments tend not to be 
updated in the frenzy of debugging and thus the comments and the actual code 
tend to drift away from each other; second, such comments are tied to the 
definitions of functions rather than to their use, thus making the purpose of a 
function call obscure if the function name is obscure. 

Unfortunately, the long identifier convention was not followed from the 
very beginning of implementation, and some older pieces of code contain 
functions with shorter, less descriptive names. Also, note that we do not use 
any contextual cues to indicate the separations between words in an identifier, 
such as underscores (retrieve endsets from spanfilade) or capitalization 
(retrieveEndsetsFromSpanfilade). The original justification for this was 
that an identifier is a single unit, not a bunch of separate words. As a 
practical matter, if we had to do it over again we would probably follow the 
capitalization-of-interior-words convention. However, we feel that changing 
the convention in mid-implementation would result in confusion. 

Another side-issue is that in standard C in the Unix environment, only the 
first eight characters of an identifier are significant (and only the first 
seven for external symbols). To cope with this we use a preprocessor which 
prepends a unique sequence of characters to any long identifiers which 
disambiguates them within seven characters. Currently, this preprocessor is 
used in all the C software we write. Soon we will be converting to 4.2BSD Unix 
which supports long identifiers directly. 

Pormating -- we use a control-structure formating convention which is 
popularly called the "one true brace style". The following examples are 
illustrative: 

if (youdontcutthatout) { 
illtellyourmother(); 

} 

if (itdoesntwork) { 
fix(); 
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} else if (itworksrealgood) { 
sell(); 

} else ( 
publish ( ) ; 

} 

while (thecatsaway) ( 
themicewillplay(); 

} 

for (hesa(): jollygood: fellow(» { 
whicbnobodycandeny(); 

} 

switch (swarlock) ( 

} 

case of dynamite: 
goboom( ) : 
break; 

case of coke: 
takea( ) ; 
break; 

default: 
thebankloses(); 
break; 

Functions are formated according to the following pattern: 

typeofreturneddata 
functionname (firstargument, secondargument) 

typeoffirstargument firstargument; 
typeorsecondargumen~ secondargument; 

{ 

} 

typeoffirsttemporaryvariable firsttemporaryvariable; 
typeofsecondtemporaryvariable secondtemporaryvariable; 

bodyoffunction; 

Another formating convention we often follow is to keep very long lines 
~as is", rather than splitting them up. This is partially due to the fact that 
nobody has been able to agree upon a consistent convention for splitting lines 
and partially to enable us to unambiguously locate things using "grep". It 
does, however, result in some ugliness if the code is displayed or printed on a 
narrow (i.e., 80 columns or less) device. 

Use of types -- We follow the practice of defining new data types for any 
structs that are used. In addition, types are defined for common uses of 
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normal data types such as ints. Most type names begin with "type", for 
example: 

typedef struct foobarstruct typefoobarstruct; 
An historical artifact found in some of the code is that many types are defined 
using #define rather than typedef. These definitions date back to the 
initial phases of implementation in BOS C, a CP/M based C dialect which lacks 
the typedef construct. 

Comments -- As a rule, we are sparing in our use of comments. It has been 
our experience that comments and the implementation have a tendency to drift 
away from each other (as mentioned above). Comments are reserved for 
explaining things that are difficult to make obvious from the structure of the 
code itself (i.e., things which can't be made self-documenting). These are 
things such as efficiency hacks for optimization, kludges of any kind, obscure 
debugging fixes, and peculiar data structure use. Comments are also used to 
block out pieces of code for debugging purposes. If, when debugging, some 
function is found to require revisions which are either substantial or subtle, 
it is our practice to "comment out" the offending piece of code, make a copy, 
and then modify the copy. This enables us to recover the old version if we 
really mess up the new one. To aid in this, our preprocessor supports 
recursively nested comments. This enables us to comment out sections of code, 
which may themselves contain comments, with impunity. 

COMMENTARY ON THE PRESENT SYSTEM SOURCE CODE 

The present backend consists of slightly over 12,000 lines of C. Most 
(perhaps 75%) of this bulk is devoted to various support operatiOns such as 
storage allocation and disk space management. This code is divided into 
approximately 500 C functions spread over approximately 50 files. 

The two versions of the system --

We maintain two versions of the backend. One is called xumain and the 
other is called backend. Backend is the true backend program which 
interacts with a frontend. Xumain is a standalone version for debugging 
purposes which prompts the terminal directly for the input that it would 
ordinarily get from a frontend. The expected format of this input is 
the same as the what a frontend would produce and xumain is therefor considered 
"user hostile". We are gradually phasing xumain out as our frontend becomes 
more functional and sophisticated. Both versions share all of their code 
except for the very top level (main) and the interface protocol I/O routines. 

High-level structure --

Both versions have the same structure. The main routine calls some 
initialization routines and then enters a loop. Inside this loop it repeatedly 
gets a request from the frontend (or the user terminal in the case of xumain) 
and processes it. The actual processing is done by a series of semantic 
routines, one for each request in the interface protocol. The selection of 
which semantic routine is to be used is determined by a table indexed by 
request number (the request number is, syntactically, the first thing in any 
request). Each of the semantic routines has the same basic structure. First, 
a "get" routine is called which reads and parses the parameters appropriate 
to the given request (there are two sets of "get U routines, one each for xumain 
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and backend). The "get" routine builds the appropriate data structures to 
represent the information contained in the request. A "do" routine is then 
called which performs the actual request. There is also one "do" routine per 
request. Each of these do routines calls the appropriate high-level enfilade 
manipulation routines to accomplish the requested action. The Udo" routine 
returns a data structure containing the appropriate information in response to 
the request. Finally, a "put" routine is called which packages the information 
in the appropriate format and sends it back to the frontend (as with the "get" 
routines, there are two sets of "put" routines) . 

Storage management and virtual memory 

The largest portion of the code is devoted to storage allocation and 
deallocation. We found it necessary to write our own storage allocator because 
the one Unix provides could not cope with our application. In particular, 
there is no way to tell when you have run out of space when using the Unix 
storage routines. We also must manage the allocation of disk space. The 
present implementation simulates a raw disk by storing everything in a single 
giant Unix file named "enf.enf". 

The coredisk virtual memory mechanism uses a cyclical garbage collector 
called the grimreaper. All of the data structures resident in core at any 
particular time are linked together in a large circular list. Associated with 
each piece is an age. When something must be swapped out to make room for 
something being swapped in, grimreaper traverses this list. Things which are 
sufficiently old are swapped out or discarded (depending upon whether or not 
they have been altered since they were brought in from disk). Things which are 
not old enough to be reaped have their ages incremented. Grimreaper 
continues traversing this list until enough space is freed to meet the present 
demands. 

Another data structure used internally and which is not described 
elewhesa hi calaask. A task is simply a handle on a linked 
together collection of allocated temporary core storage associated with some 
function or task (hence the name) 1n the system. Temporary storage is 
allocated to a particular task. When finished with the activity to which the 
task structure belongs, the entire body of allocated temporary storage can be 
easily deallocated by traversing the allocation list in the task structure. 

Creeping abbreviationism --

In spite of our long identifier convention, certain standard abbreviations 
have crept into some function names. The expansion of these 1s as follows: 

pm -- poomfilade 
sp -= spanfilade 
gr == granfilade 
cbc == core bottom crum 
cuc == core upper crum 
dbc == disk bottom crum 
duc -- disk upper crum 
nd == n-dimensional enfilade (e.g. , the poomfilade or spanfilade) 
seq == sequential enfilade (e.g . , the granfilade) 
dsp -- disp 
vsa == v-stream address 
isa -- i-stream address 
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Other dangling cruft --

The present code contains a lot of ugliness due to debugging efforts. 
Often, pieces of code are commented out which are duplicate versions of 
troublesome routines. In addition, there are diagnostic print statements and 
calls to data structure dumping routines that clutter many places. These my 
somtimes obsure the true purpose of the code they are found in, especially 
if they are heavily used. There is also a whole file full of diagnostic 
routines which test various functions and allow complicated data structures to 
be dumped to the screen or to a file in a readable format. The routines are 
useful and important but add to the bulk of the code. 
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Glossary of Terms 

This document is a comprehensive glossary of all the new terms introduced 
in the Xanadu documents. Terms are listed in alphabetical order, followed by 
their definitions. Little effort has been made to avoid circular definitions: 
for more complete explanations, read the relevant documents. Etymological 
notes are given in some cases for historical value and the amusement of the 
reader. These are enclosed in brackets (11[11 and 11]11). 

append -- One of the fundamental operations on enfilades. Adds new data items 
to an enfilade at the "end" of some dimension of index space. 

atom -- One of the fundamental primitive entities that the Xanadu System deals 
with. There are two types of atoms: characters and orgls. 

backend -- The component ofaXanadu System responsible for managing the 
actual storage and retrieval of atoms. 

bert -- A locking identifier associated with the top of an orgl. Identifies 
the particular version of an orgl being dealt with when that orgl has 
been changed but not assigned a permanent address. Also prevents 
deadlock between processes by allowing concurrent access to documents. 
[Berts are named after Bertrand Russell, because they represent a 
fanatical effort to keep things consistent.] 

bottom crum -- A crum at the bottom level of an enfilade. May be different 
regular crums since it may contain actual data that the upper crums do 
not contain. 

core -- The term we prefer for a computer's local high-speed random access 
memory. [We like the term "core" even though it is archaic because 
1) the term IlRAMII is misleading, since disk is random access too: 2) 
the term "semiconductor memory" is as implementation technology 
specific and as likely to eventually become archaic, as well as being 
an unwieldy mouthful of words; 3) the term "core" is short, pithy and 
easy to remember; 4) everybody knows what you mean anyway.] 

core/disk memory model -- The memory model used in the Kanadu System 
architecture which assumes a limited amount of high speed core memory 
coupled with large quantities of disk storage. 

crum -- A "node" (in the traditional sense of the term) in an enfiladic data 
structure. Contains the wid and disp. [Named after a river in 
Pennsylvania on the banks of which the crum was invented. Also an 
acronym for "Chickens Running Under Mud" (don't ask).] 

crum-block -- A loaf. Usually used in the context of packing large numbers of 
crams together in a disk block for long-term storage. 

cut -- One of the fundamental operations on enfilades. Makes splits in the 
data structure for purposes of insertion, deletion or rearrangement. 
Cut is also a noun referring to a split made in the data structure by 
the cut operation. 

data disp -- A disp whose purpose is not the location of items in index space 
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but rather the implicit containment of data itself. 

data wid -- A wid whose purpose is not the location of items in index space but 
rather the implicit containment of data itself. A data wid is 
generally an abstraction or generalization of all the data stored 
beneath its crum. 

data widdative function -- A function for computing a crum's data wid from the 
wids and disps of its children. 

delete -- One of the basic operations on enfilades. Removes material from a 
specified portion of the data structure. 

disk -- The term we prefer for a computer's lower-speed high volume storage. 
[The term "disk", like "core", is preferred because of its simplicity 
and brevity, though it may not be totally accurate.] 

disp -- One of the two principal components of a crum (the other being the 
wid). Indicates the crum's displacement in index space relative to its 
parent crum. ["Disp" is short for "displacement" but has come to be 
its own term, rather than an abbreviation, since in some sorts of index 
spaces it may not be a displacement per se.] 

DIV poom -- An extended form of the poomfilade that adds an additional 
dimension to represent orgl-of-origin. ["DIV" stands for 
"Document-Invariant-Variant", the three dimensions of the DIV poom. 
Document is a historical term for one conventional type of orgl.] 

document -- One of the standard types of orgls in a literature-based xanadu 
application. A document is an orgl with two V-spaces: a I'text space" 
and a It link space". 

drexfilade -- An improved model of the spanmap. 
person who invented it.] 

[Named after Eric Drexler, the 

end-set -- Generic term for the collections of V-spans connected by a link. 
[The most simplified notion of a link is as a "magic piece of string" 
from one piece of data to another. End-sets are what are found at the 
ends of the string.] 

enfilade -- One of a family of data structures characterized by being 
constant depth trees with wids and disps, rearrangability and the 
capacity for sub-tree sharing. 

footnote link -- One of any number of possible standard link types. Represents 
a footnote. 

four-cut rearrange -- One of two "flavors" of rearrange operation. Four cuts 
are made in the enfilade and the material between the first two is 
swapped with the material between the second two. 

from-set -- The first end-set of a link. Contains the set of V-spans at the 
starting end of the directed connection represented by a link. 

frontend -- The component of the Xanadu System responsible for user interface 
and any functions which depend upon the content of the data stored in 
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the backend (e.g., keyword searches). 

frontend-backend interface -- The frontend and the backend communicate with 
each other in an interface language called Phoebe over some sort of 
communications line or I/O port. The frontend asks the backend to do 
things for it and the backend responds to these requests via the 
frontend-backend interface. 

fulcrum -- The very topmost crum of an enfilade, from which all other crums 
are descended. [So called because it "contains" the full enfilade 
beneath it. Also, enfilades are frequently illustrated graphically as 
broad based isoceles triangles with the fulcrum at the peak (which does 
look like a fulcrum).] 

grandmap -- One of the primary components of the system. Maps from I-stream 
addresses to the physical locations where the corresponding atoms are 
stored. 

granfilade -- One of the primary data structures in the system. Used to 
implement the grandmap. ["Granfilade" implies "grand enfilade". It is 
the largest single data structure, in the sense that it "contains" 
everything stored in the system.] 

historical trace -- A aore advanced (as yet unimplemented) facility of the 
Kanadu System which enables the state of an orgl at any point in its 
edit history to be determined. 

historical trace enfilade The enfilade with stores the history of a phylum 
so that the state of any of its orgls at any time may be reconstructed. 

historical trace tree -- The branching pattern of changes and versions made to 
a phylum over time. 

humber A form of infinite precision integer that can represent any number in 
a reasonably sized space. ["Humber" is derived from IIBuffaan encoded 
number". ] 

index disp -- A disp whose primary purpose is the location and identification 
of data items, as opposed to a data disp. 

index space -- The space in which an enfilade "lives". Locations in this space 
are used as the index values identifying things to retrieve and the 
places to make cuts. An index space may have multiple dimensions, 
where a dimension is defined in our context as simply a separable 
component of indexing information which may be used by itself in a 
sensible fashion to (perhaps only partially) identify or locate 
something. 

index wid -- A wid whose primary purpose is the location and identification of 
data items, as opposed to a data wid. 

index widdative function -- A function that computes a crums index wid from the 
wids and disps of that crums children. 

insert -- One of the basic operations on enfilades. Adds material at some 
specified location in the data structure. This operation is redundant 
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since it may be implemented by an append followed by a rearrange. 

invariant orgl identifier -- A tumbler which is both a V-stream address and an 
I-stream address which identifies a "top" level orgl (i.e., one that is 
directly accessible from the external world rather than being retrieved 
as the contents of some other orgl. 

invariant part -- The portion of a V-stream address which constitutes an 
invariant orgl identifier that identifies the orgl which maps the 
V-stream address to some I-stream address. It is a syntactically 
separable part of a V-stream address. 

invariant stream -- The address space in which atoms are stored. When 
initially placed in the system, each atom is assigned to the next 
available space on the invariant stream. 

I-span -- A span of atoms on the I-stream. Consists of a starting position 
together with a length. The term "I-span" is variously used to refer 
to the addresses in such a span or to the atoms themselves, depending 
upon context. 

I-stream -- Abbreviation for "Invariant stream". Used acre commonly than the 
longer term. 

I-stream address -- A location on the I-stream. 

I-stream order The order in which atoms appear on the I-stream. 

I-to-V mapping The correspondence between I-stream addresses and V-stream 
addresses which is represented by an orgl. 

jump link -- One of any nWllber of possible standard link types. Represents the 
simplest possible connection from one place to another. 

level pop -- one of the fundamental operations on enfilades. Makes the data 
structure smaller (in both actual and potential size) by removing a 
redundant fulcrum. 

level push -- One of the fundamental operations on enfilades. Enlarges the 
potential size of the data structure by adding a level on top of the 
fulcrum. 

link -- One of the standard types of orgls in a literature-based Xanadu 
application. A link is an orgl with three V-spaces called "end-sets": 
the "from-set", the "to-set" and the "three-set lt

• 

link space -- The V-space of a document orgl which contains links. 

loaf A group of crums together. Generally used in the context of the group 
of sibling crume that are the set children of some other crum. (A loaf 
is of course what you get when you pack a bunch of crum(b)s together.] 

marginal note link -- One of any number of possible standard link types. 
Represents the connection to a "marginal note". 

X-dimensional enfilade -- A family of enfilades whose index spaces are 
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node 

orgl 

N-dimensional euclidean spaces indexed by cartesian coordinates. 

A computer in a distributed processing and data storage network. 

One of the primary data structures in the system. Maps from V-stream 
addresses to I-stream addresses and vice-versa. ["Orgl" is short for 
"ORGanizationaL thingie".] 

Phoebe -- The name of the frontend-backend interface language. [Phoebe 1s 
derived from "fe-be" which in turn is short for "frontend-backend".] 

phylum -- The collective group of orgls represented by an historical trace 
tree. [The term "phylum" denotes a tree-like family structure. It 
also sounds vaguely like "file".] 

POOM -- A permutation-matrix-like mapping which is implemented by the 
poomfilade. Used to represent orgls. ["POOM" stands for "Permutations 
On Ordering Matrix".] 

poomfilade -- The enfilade used to represent POOMs and therefore orgls. 

process A particular connection to the backend that may request the storage 
or retrieval of characters and orgls. 

quote link -- One of any number of possible standard link types. Represents a 
quotation. 

rearrangability -- One of the properties of enfilades. Rearrangability means 
that pieces can be reorganized on one level of the tree and descendant 
levels will automatically be reorganized accordingly. 

rearrange -- One of the fundamental operations on enfilades. Changes the order 
in index space of material. There are two types of rearrange operation 
called "three-cut rearrange" and "four-cut rearrange". 

recombine -- One of the fundamental operations on enfilades. "Heals" cuts and 
compacts the data structure after it has been fragmented by other 
operations. 

retrieve -- One of the fundamental operation on enfilades. Obtains the data 
item associated with a particular location in index space. 

span -- A contiguous collection of things, usually characters. Usually 
represented as a starting address together with a length. The term is 
also sometimes used to refer to the length itself (as in "what is the 
span of this document?"). 

spanfilade -- One of the primary data structures in the system. Used to 
implement the spanmap. ["Spanfilade" implies "enfilade for dealing 
wi th spans".] 

spanmap -- One of the primary components of the system. Maps from the 
I-stream addresses of atoms in general to the I-stream addresses of 
orgls r@f@r@ncing thos@ atoms. 

sub-tree -- Some portion of an enfilade denoted by a crum and all of its 
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descendants. A sub-tree is itself an enfilade with the crum its peak 
as the fulcrum. 

sub-tree sharability -- One of the properties of enfilades. Sub-tree 
sharability means that sub-trees can be shared between enfilades or 
between different parts of the same enfilade in a manner that is 
transparent to the fundamental operations that can be performed. 

sub-tree sharing -- The act of taking advantage of sub-tree sharability. 

text space -- The V-space ota document orgl which contains character atoms. 

three-cut rearrange -- One of two "flavors" of rearrange operation. Three cuts 
are made in the enfilade. The material between the first and second 
cuts is swapped with the aaterial between the second and third cuts. 
This can also be seen as aoving the material found between the first 
and second cuts to the location defined by the third cut, etc. 

three-set -- The third end-set of a link. Contains material the addresses or 
contents of which indicate something about the nature or type of the 
link. [The term is a pun, counting the end-sets "from, to, three" 
(one, two, three).] 

to-set -- The second end-set of a link. Contains the set of V-spans at the 
terminating end of the directed connection represented by a link. 

tumbler -- The type of number used to address things inside the Xanadu System. 
A tumbler is a transfinitesimal number represented as a string of 
integers, for example "1.0.3.2.0.96.2.0.1.137". ["Tumbler" is sort of 
a contraction for "transfinitesimal humber".] 

tumbler addition -- A form of non-commutative addition defined on tumblers for 
purposes of, among other things, implementing the fI.+." operator for 
enfilades constructed in tumbler space. 

upper crum -- A non-bottom crum. 

variant part -- The portion of a V-stream address which identifies a particular 
location inside the orgl identified by the invariant part. It is a 
syntactically separable part of a V-stream address. 

variant stream -- The address space in .which, to the outside world, atoms 
appear to be stored. Also called the "virtual stream" or "V-stream". 
(See "V-stream".] 

version -- An alternate form for some orgl, representing a past, future or 
current-but-different organization for the same body of material. 

versioning -- The process of storing alternate organizations for a given body 
of material by constructing multiple enfilades which use sub-tree 
sharing for the portions where they are the same. 

virtual copy -- 1. A copy of some set of atoms made not by duplicating the 
atoms but by mapping additional V-stream locations onto the atoms I 
I-stream locations. 2.Duplication of some portion of a data structure 
by using sub-tree sharing rather than by actually copying the material 
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stored. 

virtuality -- The "seeming" of something. "Virtuality" is to "reality" as 
"virtual" is to "real". [Virtuality is one of innumerable terms 
coined by Ted Nelson. Since it is a useful concept, the term has stuck 
with us.] 

virtual space -- A separately addressable sub-region of an orgl. An orgl may 
have any number of virtual spaces. 

virtual stream -- The address space in which, to the outside world, atoms 
appear to be stored. Also called the "variant stream" or "V-stream". 
[See "V-stream".] 

virtual stream address -- A location on the virtual stream. 

V-space -- Short for "virtual space". 

V-span -- A span on the V-stream. 

V-stream -- Short for "virtual stream" or "variant stream". [The "V" variously 
stands for "virtual" or "variant" because of the trade secret status of 
much of the Xanadu internals: "Virtual" is the public term, referring tc 
the order in which things appear to the outside world. "Variant" is 
the private term, referring to the relationship between the Variant 
(i.e., changing) order that is shown to the world and the Invariant 
(i.e., not changing) order in which things are actually stored.] 

V-stream address -- Short for "virtual stream address". 

V-stream order The order in which atoms appear on the V-stream. 

V-to-I mapping The correspondence between V-stream addresses and I-stream 
addresses which is represented by an orgl. 

wid -- One of the two principal components of a crum (the other being the 
disp). Indicates the cram's width in index space (i.e., the volume of 
index space spanned by its children). ["Wid" is short for "width" but 
has come to be its own term, rather than an abbreviation, since in some 
sorts of index spaces it may not be a width per se.] 

widdative function -- The function, characteristic of any particular type of 
enfilade, which computes a crum's wid from the wids and disps of its 
children. A notable property of the widdative function is that it is 
associative. 

Xanadu -- The name of our favorite hypertext system. [Taken from the poem by 
Samuel Taylor Coleridge about a mythical paradise constructed by 
Kubla Khan.] 

.==. Notation for operator that tests for the "equality" of two index space 
locations . 

. <. -- Notation for operator that tests whether one index space location 
"precedes" another. 
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.<=. -- Notation for operator that tests whether one index space location 
is "less than or equal to" another. 

. +. Notation for index space "addition" operator . 

Notation for index space "subtraction" operator. 

• 0. Notation for the origin of the index space . 



Apr 26 08:50 1984 -- XIII -- Outline of Tasks -- Page 1 

Description of tasks and considerations for Xanadu development plan 

(Task names begin with capital letters (i.e., IIDocument VM II ). Considerations 
begin with lower case letters (i.e., "origin of link spans"). Tasks whose 
descriptions are not self evident from their titles are explained in greater 
detail following the task name. 

A. Design 
Includes all those tasks which involve figuring out the broad outlines 
of how the system is to be put together and what the external form of 
the system should be. Does not include detailed implementation 
design (that is considered a part of the implementation task). 

1. Host system training 
Familiarize ourselves with the idiosyncrasies of the tools we are 

going to be using throughout the project. 

&. Understand Interlisp 
Learning our way around the Interlisp environment: how 
to compose, compile and debug programs and how to use the various 
tools that are lying around. 

b. Figure out their VM 
Obtain a solid working understanding of the underlying virtual 

memory mechanism in the Interlisp-D system. 

2. Virtual Memory 
Involves designing the backend virtual memory system to support 
Kanadu's needs while coexisting harmoniously with the (already 
present) virtual memory system of the host environment. 

&. Integrate with host VM 
Figure out how to construct our VM on top of Interlisp's, without 
clashing with it and hopefully being assisted by it. 

b. Design LRU scheme, working sets, list VM 
Design the basic mechanisms of our virtual memory. 

c. Design coredisk, free disk allocation 
Work out some of the crufty details of our VM. 

d. Document VM 

3. New data structures 
The various considerations associated with this task (items a-d) are 

pending design problems to be solved in the new data structures. 

a. origin of link spans 
b. virtual copy fix 
c. link span info in granf 
d. exfoliating trees 

e. Document new data structures 

4. Time stuff 
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Figure out how to cope with the time dimension of material stored in 
the system. Items a-d are considerations. 

a. requirements for retrieval 
b. time-stamp stuff 
c. time sieving 
d. delta-t wids in HT, elsewhere 
@. times of interest! cr@at@, modify, read (first, last, what parts when?) 
d. retrieve by? primitives; time restrictions 

g. Design time stuff 

5. Future plans and considerations 
Involves those aspects of the future Xanadu design which must be 
built into the single-user system to avoid having to redesign or 
reimplement the system from scratch when we undertake development of 
a multi-user distributed system. This task essentially consists of 
making sure that we are not stepping on our own toes. 

a. Design modularization for multi-user 
Determine the modular structure of a mUlti-user system so that the 

modular structure of the single-user system will not differ from 
it significantly. 

b. Figure out modularity for semi-distributed (single-node, multi-CPU) 
Design the architecture of the future semi-distributed system in 
order to find any ramifications that such plans might have on the 
current single-user design. 

c. Figure out communications and synchronization for semi-distributed 

d. Consider ramifications of greater distribution (multi-node) 

e. Design archiving; internode protocol 
Design facilities for archiving versions of documents in order to 

cope with storage fragmentation when the volume of data stored in 
the system becomes very large. This includes some thinking about 
distributed systems since things that originate in one part of a 
distributed system might be archived in another. 

f. Document future plans and considerations 

6. Historical Trace 
Design the virtuality of the historical trace facility. 

a. HT black box spec 
Determine the desired functional behavior of the historical trace 
facility. 

b. HT protocol 
Design the components of the frontend/backend interface protocol 

which deal with the historical trace facility. 

7. Protection and authority control 
Select and design the data protection. security and access control 
features of our system. 
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a. Design protection 

b. Design authority control 

8. Retrieve protocol 
Design the frontend/backend interface protocol components for the 
retrieval of information from the backend. 

a. Format and design of restriction sets 

b. Bert internal and external representation 

c. Design retrieve protocol 

9. Backend design completion 
Various miscellaneous things which must be accomplished before the 

backend design can be said to be truly complete. 

a. Verify that disk output is safe from crashes 
Make sure that the design is such that data integrity and the 
structure of orgls is preserved if the system crashes. 

b. Document internal structures design 

c. Document new protocols 
Document the various pieces of the frontend/backend interface 

protocol that have been designed. 

10. Test-Frontend 
Design a frontend for purposes of testing and diagnosing the backend. 

a. Design test-FE functionality 

b. Design test-FE Virtuality 

B. Implement 
Includes designing the details of the actual code to be produced and 
then actually producing it, including both coding and debugging. 

1. Additional host system training 

a. Really understand Interlisp 
Learn about various more subtle aspects of the Interlisp-D 

environment that may effect the implementation effort. 

2. Variable length tumblers 
Produce the primitive routines to handle Xanadu's peculiar underlying 
data types. 

a. Design tumbler routines 

b. Implement tumbler routines 

3. Virtual Memory 
Implement the backend virtual memory. 
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a. Figure out how to implement shared core 
This is necessary for future multi-user operation. 

b. Design backend VM code 

c. Implement backend VM 

4. New data structures 
Implement the backend data structures and the routines to manipulate 

them. 

a. Unify enfilade routines with object model 
Structure the data structures and the code which manipulates them so 
that one set of consistent enfilade routines may be used with a 
variety of different underlying enfilades. 

b. Figure out HD orgls 
Determine the generalization of orgls to mUltiple dimensions so that 
the present one-dimensional implementation will be a step on the 
path to a future multi-dimensional one. 

c. Figure out implementation of in-core subtree sharing 

d. Design code to handle data structures 

e. Implement code to handle data structures 

f. Document data structures' implementation 

5. New frontend/backend protocol 
Consists of implementing the parser and interpreter for the 

frontend/backend interface protocol. This is the component of the 
system which "drives" everything else. 

a. Design parser for fe/be interface protocol 

b. Design I/O routines 

c. Design semantic routines for fe/be interface protocol 

d. Implement parser 

e. Implement I/O routines 

f. Implement semantic routines 

6. Backend semantic stuff 
Implement the "high level" routines which perform all the actual 
data manipulations. 

a. Design be semantic routines on top of enfilades 

b. Implement be semantic routines on top of enfilades 

7. Test-frontend 
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Implement the frontend for testing and diagnosis of the backend. 

a. Screen management 

b. Frontend VM 

c. Command interface 

d. Backend interface 

e. Interface with world 
Provide an interface between the functions of the backend and the 

functions of the Interlisp environment. 

f. Link following/link handling 

g. Retrieval functions 

8. Convert single-user to multi-user 
Most of the underlying aspects of the system required for multi-user 
operation will have been built into the single-user system. This 
task involves making the actual step to multi-user. 

a. Connect multi-processes 

9. Historical Trace 
Implement the historical trace facility . 

a. Implement transaction log 

b. Design HT code 

c. Implement HT 

10. Security and accessibility 
Involves various miscellaneous implementation tasks which must be 
completed before the system is truly ready to use. 

a. Implement protection and authority control 

b. Interface with higher-level network protocols 
Implement code to assure that the system may be used as a network­
based resource. 

c. Verify that disk output is safe from system failures 

11. Archiving 
Implement long-term document and version archiving facilities of 
various sorts. Items b-d are considerations. 

a. Implement version consolidation 

b. tape 
c. optical disk 
d. internode 
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12. Document implementation 
Produce the final documentation package for the single-node system. 

a. Document pragmatic stuff 
Document those aspects of the system which have crept in due to the 
underlying environment and due to other practical influences. 

b. Final documentation 

C. Test and measure 
AnalysiS efforts required for the planning of further development. 

1. Performance measurements 
Perform various performance tests and benchmarks and analyze the 
actual performance of the implemented system. Items c-f are 
considerations. 

a. Perform tests 

b. Document performance measurement results 

c . disk 
d. cpu 
e. response time 
f. memory 

D. Optimize 
Make the system faster, more efficient, more compact, etc. 

1 . Optimize 

a. Optimize 

E. Advanced implementation 
Additional implementation work to take advantage of the potential for 

multi-CPU distribution of the system in the special case of a LAN 
coupled environment. 

1. Multi-user to Singe-node semi-distributed 
Single-node semi-distributed involves distribution of various parts 
of a single-node over several machines. 

a. Implement multi-user Single-node semi-distributed system 

2. Single-node Semi-distributed to Multi-node semi-distributed 
Multi-node semi-distributed involves taking advantage of the 

rapid and reliable inter-node communications between a small 
number of computers which characterizes a local area network (LAN). 

a. Figure out modularity for multi-node semi-distributed 

b. Figure out synchronization and communications for multi-node 
semi-distributed 

c. Implement multi-node (LAN coupled) semi-distributed system 
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