
Apr 25 12 : 45 1984 Burn before reading -- Page 1

This document describes data structures, designs and concepts which are the
proprietary intellectual property of Xanadu Operating Company, Inc. The
contents of this document are not for distribution or release in whole or in
part to any other party without the express permission of Xanadu Operating
Company, Inc. All portions of this document are to be considered trade secrets
of Xanadu Operating Company, Inc. including the fact that some previously
published data structures may fall into the classification of "enfilades".

WARNING!

He who transgresses against the propriety of the Information contained herein
shall be Cursed! Woe unto all who reveal the Secrets contained herein for they
shall be Hunted unto the Ends of the Universe. They shall be afflicted unto
the Tenth Generation with Lawyers. Their Corporate Bodies shall be Broken and
cast into the Pit. Their Corporate Veil shall be Pierced, and Liability shall
attach to the Malefactors in personem. They shall suffer Ulcers and
Migraines and Agonies Unimagined. Yea, Verily, for such shall co .. to pass
against all who would Dare to Test the Powers of Xanadu unto their Doom.

Apr 26 08;45 1984 Table of Contents -- Page 1

I.
II.
III.
IV.
V.
VI.
VII.
VIII.
IX.
x.
XI.
XII.
XIII.

Xanadu Hypertext Documents
Table of Contents

Xanadu Operating Company / Xanadu System Proposal
System Architecture
Enfilade Theory
Data Structures
System Implementation
Xanadu Hypertext Virtuality
Future Directions for Development
Analysis of the Memory Usage and Computational Performance
Frontend/Backend Interface
Annotations to the Backend Source Code
Vitae of Key Personel
Glossary of Terms
Outline of Development Plan Tasks

Apr 26 12:42 1984 -- I -- Proposal -- Page 1

Proposal for the Implementation by
Xanadu Operating Company of a

Full-scale Semi-distributed Multi-user Hypertext System

Xanadu Operating Company (XOC) is developing a hypertext information
storage management system called "Xanadu". Hypertext is text or data which
exhibits patterns of structure or interconnectedness which are not necessarily
very regular and which may change over time. Project Xanadu, the informal
group that became XOC, has developed a family of data structures which in
combination appear to meet the requirements of such a system. A working
prototype exists implementing the rudiments of the design. Since its
computational coaplexity and storage overhead are essentially logarithmic with
the volume of stored information, it should be able to efficiently handle very
large amounts of material.

XOC intends to develop hypertext system software beyond the present
prototype stage, producing a fully operational and usable system.
Specifically, we propose to transport the current software to the Interlisp
environment, extend the design, and complete its implementation. The system
will then be tuned and optimized to increase its speed and compactness. The
end product of this effort will be a complete "semi-distributed" multi-user
Xanadu "backend" integrated with the Interlisp environment and able to serve as
an Ethernet-based resource for a wide variety of applications. Details of the
development plan, including a complete schedule and budget, are included in the
attached documents.

We believe the benefits of our system will be longer-term than 1s typical
with commercial ventures. An instantiation of these ideas in a working
database manager will be of immediate benefit to researchers in many fields.
SDFls clients appear most likely to be able to perceive and utilize the
potential in these ideas and their instantiation. Not only do these people
have a present need for this sort of tool, but they also will provide an
excellent community of critics to stimulate the refinement and generalization
of both the design and the implementation.

Apr 25 12:45 1984 -- II -- Xanadu System Architecture -- Page 1

The Xanadu Hypertext System Architecture

The Xanadu Hypertext System manages the storage, retrieval and
manipulation of character strings and orgls. An orgl is a structure which
represents the organization of a collection of address spaces (called virtual
spaces or V-spaces for short), each containing an editable stream of
atoms. This stream is referred to as the virtual stream or the variant
stream (or V-stream for short).

An atom 1s the primitive element that the Xanadu System deals with.
There are two types of atoms in the present system: orgls, representing
structural and organizational information, and characters (8-bit bytes),
representing actual data. Other types of atoms are conceivable, such as
videodisk frames or other kinds of (non-orgl) organizational structures, but
these are not present in the current design.

Any atom contained in the system may be referenced by specifying its
virtual stream address. This is recursively defined as the virtual stream
address of the orgl containing the atom, combined with the number of the
V-space which holds the atom within that orgl and the position of the atom
itself within that V-space. Orgls that are not contained within other orgls
are addressed by a special sort of V-stream address called an invariant orgl
identifier, terminating the recursion. Thus, a virtual stream address
contains a variant part and an invariant part which are syntactically
separable.

The contents of the V-spaces within an orgl may be edited. This in turn
means that the V-stream addresses of atoms within an orgl may change, as
implied by the adjective "variant". The contents of an orgl .ay be added to
or deleted from at any pOint in a V-space. In addition, sections of a V-space
may be rearranged (i.e., a section may be moved or two sections transposed).
These operations -- insert, delete and rearrange -- can cause the position and
relative ordering, the V-stream order, of atoms to shift, thus altering those
atoms' V-stream addresses as well.

Atoms are stored internally in an invariant stream (or I-stream for
short). They appear, and are addressed, in I-stream order. As the adjective
"invariant" suggests, the I-stream address of an atom never changes. The
function performed by an orgl is the mapping back and forth between I-stream
addresses and V-stream addresses. When the contents of a V-space are edited,
the orgl mapping that V-space is changed, and thus so are the virtual positions
of the atoms.

The I-stream addresses of atoms are not generally visible externally. The
only exceptions are invariant orgl identifiers which are in fact the I-stream
addresses of "top level" orgls.

The above discussion refers to mappings to and from particular I-stream
and V-stream addresses. In practice, we work with spans rather than point
addresses. A span is an abbreviated way of referring to a group of contiguous
addresses. A span consists of a starting address together with a length. A
V-span is a span of V-stream addresses, and an I-span is similarly a span
on the I-stream. An orgl maps from one V-span to a set of I-spans, and from an
I-span to a set of sets of V-spans.

Apr 25 12:45 1984 -- II -- Xanadu System Architecture -- Page 2

The actual atoms located in a particular I-span may be found using another
structure called the grandmap. The grandmap is a tree of pointers to all the
atoms currently stored in the system, indexed by I-stream address. The
grandmap provides a mapping between I-stream addresses and the locations of
the actual underlying physical storage used to hold the atoms.

There are thus three levels of addressing used in this system:

V-stream addresses identify atoms to the outside world. The V-stream
address of an atom may change and, as will be explained below, an atom may
have more than one V-stream address.

I-stream addresses identify atoms internally in a consistent and
implementation independent fashion. The I-stream address of an atom in
the Xanadu system is analogous to the accession number of a document in a
library. An atom has but one I-stream address and this address never
changes.

Physical storage addresses identify the locations of the actual bits
and bytes of atoms themselves. An atom's physical address is both
variable and highly implementation dependent. For example, it may change
due to reorganization of the underlying storage for purposes of efficiency
or convenience, or due to changes in the types of storage devices used.

To retrieve the atom located at a particular V-stream address Vq, the
invariant part of Vq's V-stream .address specification is extracted. This will
be an invariant orgl identifier for the orgl which maps Vq to some I-stream
address. Since this invariant orgl identifier is itself an I-stream address,
it may be (a~c is) used as an index into the grandmap to retrieve the relevant
orgl. Vq (the full V-stream address, not just the variant part) is then mapped
through this orgl to its corresponding I-stream address. This second I-stream
address in turn is used for a second lookup in the grandmap to acquire the atom
which Vq addresses. The following diagram illustrates the data flow:

V-stream address Vq
1 1
1 +--------------------------+
I I

(extract invariant part) I
1 1

I-stream address of
v
orgl mapping from Vq

1
1
1
1
I
1
1
1

1
I +-----+----+

1 grandmap I
+-----+----+

1
V +---+--+

orgl mapping from Vq ==============1 orgl ,
+~--+--+

1
v

I-stream address of atom at Vq
1 .,

Apr 25 12:45 1984 -- II -- Xanadu System Architecture -- Page 3

+-----+----+
I grandmap I
+-----+----+

I
v

the atom at Vq

An important consequence of the V-stream to I-stream mapping is that
several V-stream addresses may all map to the same I-stream address. This
means that an orgl may contain multiple virtual copies of a given set of
material. Although the I-stream address of an atom is related to the orgl in
which it originally was inserted, the V-stream address(es) of that atom are
under no such constraint. Therefore, virtual copies of material originating in
one orgl may appear in other orgls.

Another consequence of this structure is that multiple orgls may be used
to represent alternate V-to-I mappings for the same set of atoms, yielding
alternative versions of a given collection of material. In practice, the
data structures used to realize such orgls can share their underlying
components in those places where the V-to-I mappings are similar and need
only differ in their structure where the versions are actually different.
(See the accompanying paper on the implementation of the Xanadu internal data
structures for a detailed description of how this mechanism works).

The orgls which represent multiple versions of the same family of material
are collectively called a phylum. All of the orgls in a phylum are
"descended" from a single original orgl, in the sense that they were created by
applying some edit operations to that orgl or to one of its later descendents.

Xanadu provides a facility called historical trace. The sequence of
edit operations that have been applied to the orgls of a phylum can be seen
to form an historical trace tree. This tree branches wherever a different
version was created. Such versions result when two or more processes modify
the same orgl through different berts or when a process backs an orgl up to an
earlier state and then makes edits.

Since each of the editing primitives which the system supports is a
reversible operation upon an orgl, the state of an orgl at any point in its
history conceivably might be obtained by inverting each of the edits in an edit
log. However, a data structure is constructed which represents the edit
history of a phylum at varying levels of detail. This data structure is a tree
which at the bottom level represents individual edit operations and at the
higher levels represents compositions of these lower level edits -­
"superedits" that are single transformations that represent the end result of a
series of more primitive operations. This tree is indexed by position in the
phylum's historical trace tree (note that there are two trees here: the
historical trace tree, representing the sequence of operations forming the
phylum's history, and the data structure erected over this tree, representing
the operations themselves). The end result of a retrieval operation on this
data structure is not a series of edit operations but the actual V-to-I mapping
that existed at the indicated point in the phylum's history. The details of
how this is accomplished are given in the accompanying paper which describes
the data structures themselves. .

The system can retrieve any atom stored within it, given the atom's

Apr 25 12:45 1984 -- II -- Xanadu System Architecture -- Page 4

V-stream address. In the case of a character atom, the retrieval operation
returns the character itself. In the case of an orgl atom, an entity called a
bert is returned. A bert is an identifier for an orgl pointing to a
current access, as opposed to an established V-stream address. It grants the
process to which the bert is given exclusive access to a particular V-to-I
mapping.

A process, in the Xanadu System, means a particular external connection
to the system which may request the retrieval, creation and editing of orgls
and characters. An arbitrary (i.e., implementation dependent) number of
processes may access the system concurrently.

Separate processes which request the retrieval of the same orgl at the
same time are each given different berts which reter to the orgl. Associated
with each orgl is a count of the number of berts which currently refer to it.
If one of these processes then makes an edit change to the orgl, a new orgl
will be created. The processls bert will be made to refer to the new orgl and
the old orglls reference count will be decremented. By this means, the other
processes will not "see" the change, and their berts will still refer to the
same V to I mapping as previously. Any information about the orglls state
which the other processes might have been keeping externally will not be
invalidated by the one processls edit operation.

A structure called the spanmap implements two mappings. The first of
these is from the I-stream addresses of atoms in general to the I-stream
addresses of orgls. The second mapping is from the same original I-stream
addresses to berts. The spanmap is designed to answer querys about which orgls
reference which I-spans. It quickly identifies the orgl or orgls that map some
V-stream address(es) onto a particular I-stream address. This is the inverse
of the set of mappings implemented by the full collection of orgls stored in
the system.

The spanmap, as its name suggests, is fundamentally designed to deal with
spans. It enables the system to answer queries about which orgls refer to
particular pieces of material, given the V-stream addresses of the atoms of
interest. The general form of such a query takes the form of the question,
"what are the V-stream addresses of all the orgls which refer to this
particular V-span?" The V-span of interest is mapped to a set of I-spans (call
this set QJ for "query), using the procedure described above in the
discussion of the operation of orgls. This I-span set, Q, is then used to
initiate a lookup in the spanmap which results in a set of one or more I-stream
addresses corresponding to the orgls which reference Q (along with berts
identifying orgls that reference Q but may not yet have I-stream addresses).
These I-stream addresses are then looked up in the grandmap, yielding the orgls
themselves. These orgls are in turn used to map Q to a set of V-spans (keep in
mind that the mapping implemented by an orgl is bidirectional) which are then
returned as the answer to the process which initiated the query.

Since the number of orgls which might refer to a particular I-span is
potentially very large, the spanmap enables restricted retrievals. A
retrieval may be restricted to return only orgls from a particular set, for
example those which reference a particular I-span in addition to the one of
interest. This is important, among other reasons, because queries are
generally expressed in terms of V-spans, and a single V-span may map to a
number of I-spans. It one wishes to determine the set of orgls which reference
a particular V-span, what is desired is the intersection of the sets of orgls

Apr 25 12:45 1984 -- II -- Xanadu System Architecture -- Page 5

that reference the I-spans that the V-span of interest maps to.

The spanmap also enables queries that may be expressed in terms of the
overlap of spans, rather than simple reference. Thus one aay ask which orgls
contain I-spans that begin inside a particular span and end outside of it, for
example. The reader is again referred to the companion paper on the
implementation of the various data structures.

In summary then, the system consists of four primary components:
1) orgls, which map back and forth between V-stream and I-stream

addresses,
2) the grandmap, which maps from I-stream addresses to the physical

addresses of atoms (characters and orgls) themselves,
3) the spanmap, which maps from the I-stream addresses of atoms to the

I-stream addresses of orgls which reference those atoms, and
4) an historical trace, which enables the determination of the contents

of an orgl at any point in its history or the history of any of its other
versions.

Apr 25 12:46 1984 -- III -- Enfilade Theory -- Page 1

Enfilade Theory

The underlying data abstraction of the Xanadu System is the enfilade.
The grandmap, spanmap and orgls are all implemented using different types of
enfilades. We shall first discuss enfilades generally and then show how the
theory is adapted to specific implementation.

DEFINITIONS

An enfilade is a data structure in which the positions of data items in
index space (i.e., the retrieval keys associated with those data items) are
stored indirectly, as local positions relative to the data items' neighborhoods
in the data structure, rather than being stored directly, as absolute
positions.

Enfilades have traditionally been implemented as trees. Each node of the
tree is called a crum (in order to disambiguate the term "node" -- see
footnote 1). Each crum contains, either explicitly or implicitly, two
components of indexing information, called the wid and the disp. In
addition, a crum may contain other structural inforaation, such as pointers to
descendent or sibling crums.

A disp represents the relative offset, in index space, of its crum
from its crum's parent. The "sum" of a crum's disp with those of all of its
ancestors determines the crum's absolute position in index space. A change in
a crum's disp therefore causes a corresponding change not only in the crum's
absolute position but in those of all of its descendents.

A wid represents the extent, in index space, of its crum's collective
descendants, relative to itscrum's position (which is in turn derived from its
crum's disp). A change in a crum's wid may result if the wid or disp of one of
the crum's children changes.

An enfilade's disps are interpreted in a top-down fashion, telling the
relationship of crums to their ancestors, while the wids are interpreted from
the bottom-up, indicating the relationship of crums to their descendents.

A group of sibling crums, all descended from the same parent crum, is
collectively referred to as a loaf or crum-block. The single crum which
forms the root of the tree and from which all other crums are descended is
called the fulcrum. The disp of the fulcrum is offset relative to the origin
of the index space. The crums which form the leaves of the tree are called
bottom crums. The tree is maintained at a constant depth, so all bottom
are the same number of levels below the fulcrum. Bottom crums may contain
actual data in addition to structural and indexing information and therefore
may have a different structure or form than their ancestors do. Non-bottom
crums are referred to as upper crums. When ennumerating the levels of an
enfilade, it is conventional to number from the bottom up so that the level
number of a crum will not change as the enfilade grows or shrinks (levels are
added or deleted at the top).

An index space may be multi-dimensional, and not all dimensions need
participate in enfiladic operations, as described below.

An enfilade is similar in many ways to a conventional B-tree. This is
especially so when considering the set of primitive operations that are

Apr 25 12:46 1984 -- III -- Enfilade Theory -- Page 2

defined. However, an enfilade is not a B-tree. Enfilades possess two
properties that distinguish them from B-trees (properties that were, in fact,
the motivation for the invention of the first enfilades). These properties
are rearrangability and the capacity for sub-tree sharing. These derive from
the nature of wids and disps as local abstractions independent of the overall
frame of reference of the full data structure.

While enfilades have traditionally been implemented as trees, we do not
feel that this is essential. Generalization of the theory of enfilades to
other types of data structures, for example hash tables, has been considered
but not yet examined in depth.

OPERATIONS

The fundamental operations on an enfilade are retrieve, rearrange and
append. These are augmented by the useful, though not strictly necessary,
operations insert and delete. All of these are supported by the
"housekeeping" operations cut, recombine, level push and level pop.

The retrieve operation obtains a data item associated with a particular
location in index space . Such a data item may be stored in an enfilade
either directly, by actually storing it in the bottom crum associated with
the desired position in index space, or indirectly, as a function of the wids
and disps of the crums traversed while descending the tree to that bottom crum.
The latter alternative 1s fairly unusual and deserves elaboration. For
example, enfilades in index spaces with multiple independent dimensions could
store data by indexing with some dimensions and not others and then return the
positions of bottom crums along the other dimensions . A single enfilade may
contain several collections of data at once, some stored one way and some
another.

The general algorithm for retrieve is:

retrieve (indexSpacePosition)
result <-- recursiveRetrieve (indexSpacePosition, fulcrum, .0.)

end retrieve

recursiveRetrieve (index, aerum, cumulativelndex)
if (index .==. cumulativelndex)

result <-- data (aerum)
else

for each child of aerum
if (disp(child) .<=. index) and (index .<. (disp(child) .+. wid(child)))

result <-- recursiveRetrieve (index, child, cumulativelndex .+.
disp(chlld»

end if
end for

end if
end recursiveRetrieve

where disp(crum) extracts a crum's disp, wid(crum) extracts its wid, and
data(crum) extracts the datum from a bottom crum. The symbols .==., ~
and .<=. represent comparison operators in index space. The symbol ~
represents "addition" in index space. The symbol ~ represents the origin
of the index space. If less than the full number of possible dimensions is
being used for indexing, the index space operators must be specified to take

Apr 25 12:46 1984 -- III -- Enfilade Theory -- Page 3

this into account. The symbol <-- is an assignment operator. result is
assigned to to return a value. "The control constructs are what they appear to t

Note that this algorithm retrieves exactly one data item stored directly
in a bottom crum. If data are stored indirectly in the wids and disps, as
described above, the algorithm must be modified accordingly. To implement the
case described previously (where some dimensions are used for indexing and
others for indirect data storage), the operators .==., ~ and .<=.
should be defined only to compare along the indexing dimensions, while .+.
should be defined on all dimensions. The result returned should not be the
extraction of data from the bottom crum but the extraction of the data
dimension components of cumulativelndex.

Also note that it is possible for a single index space position to map to
more than one data item, although this algorithm would only return the last of
these. The possibility of such multiple hit retrievals is a general property
of enfilades, although specific types of enfilades may by their nature exclude
it (multiple hit retrievals may occur, for example, in the case of a
multi-dimensional index space when data are retrieved using indices with less
than the full number of dimensions). The obvious generalization of collecting
aultiple data items into a set was omitted for the sake of clarity.

This algorithm also does not take into account the possibility that the
desired data item might not be present at all. Once again, the generalization
of collecting the results in a set would correct this (the result in such a
case would be an empty set) and the omission is for clarity.

In cases where multiple hits are excluded, retrieval time is logarithmic
with the number of data items stored. Where multiple hits are permitted,
non-logarithmic elements are "introduced and the analysis is not so
straightforward, but depends upon the specific nature of the enfilade in
question. In the case of multi-dimensional index spaces, retrieval times
depend on the splitting and regrouping algorithms used to balance the tree.
There are tradeoffs that depend on the number of dimensions that are typically
to be used to retrieve with and the performance in atypical retrievals. If the
enfilade is totally optimized along one dimension, retrievals will be of
logarithmic order along that dimension and linear along the others. If it is
optimized along D dimensions collectively and retrievals are performed along K
of those dimensions, the retrieval time will be on the order of
N**«D-K)/D}*log(N), K<=D, where N is the number of data items stored in the
enfilade.

The rearranqe operation alters the index space positions of clusters of
data items by selective alteration or transposition of disps. Rearrangability
is one of the two essential properties of enfilades which distinguish them from
other sorts of data structures (the other, sub-tree sharability, is discussed
below). Rearrange changes the relative ordering of crums in index space.

Rearrange operations are specified in terms of cuts. There are two
"flavors" of rearrange, called three-cut rearrange and four-cut rearrange.
A cut delineates a boundary for the rearrange operation. A cut is a
separation between two regions of interest, defined by a position in index
space, 0, such that there exists a pair of sibling crums (i.e., crums descended
from the same parent), A1 and A2, such that:

indexSpacePosition(Al) .<=. 0 .<. indexSpacePosition(A2)

Apr 25 12:46 1984 III -- Enfilade Theory -- Page 4

and
(indexSpacePositlon(Al) .+. disp(Al» .<= C

and, for any crum Q in the enfilade at a level lower than that of Al and A2:

indexSpacePosition(Q) .<=. C implies that either
indexSpacePosition(Q) .<. indexSpacePosition(Al)

or
Q is a descendant of Al

and

C .<. indexSpacePosition(Q) implies that
indexSpacePosition(A2) .<-. indexspacePosition(Q)

where, if the index space is multi-dimensional, the comparison operations are
limited to the dimensions along which the cut is being performed (cuts are
often made along less than the full number of dimensions).

Cuts are generally used in groups (in the case of rearrange, in groups
of three or four). When multiple cuts are used together they are constrained
to propagate upward until all cuts reach a common ancestor. In other words, if
cut Cl is bounded by crums Al and A2, as described above, and cut C2 is
similarly bounded by crums A3 and A4, then crums AI, A2, A3 and A4 should all
have the same parent.

A three-cut rearrange performed with cuts C1, C2 and C3 moves the
material between C2 and C3 to the position defined by Cl (or, equivalently,
moves the aaterial between Cl and C2 to the position define by C3). This is
accomplished at the level of the sibling crums at the top of the three cuts by
adjusting some of the crums' disps, as follows, where P is the parent to all of
the crums at the top of the cuts:

for each crum that 1s a child of P

end for

pos <-- indexSpacePosition(crum)
if (Cl .<. pos) and (pos .<=. C2)

disp(crum) <-- disp(crum)
else 1f (C2 .<. pos) and (pos .<=

disp(crum) <-- disp(crum)
end if

. +. (C3
C3)

(C2 . -.

where the symbol :..=...:.... represents "subtraction" in index space.

C2)

C1)

A four-cut rearrange performed with cuts Cl, C2, C3 and C4 transposes
the material between cuts Cl and C2 and the material between cuts C3 and C4.
As with the three-cut rearrange, this is performed by manipulating the disps
of the crums at the top of the cuts:

tor each crum that is a child at P
pos <-- indexSpacePosition(crum)
if (C1 .<. pas) and (pos .<-. C2)

disp(crum) <-- disp(crum) .+. (04
else it (C2 .<. pas) and (pos .<=. C3)

disp(crum) <-- disp(crum) .-. (C2
else if (C3 .<. pos) and (pos .<~. C4)

02)

Cl) .+. (C4 C3)

Apr 25 12:46 1984 -- III -- Enfilade Theory -- Page 5

disp(crum) <-- disp(crum) (C3 C1)
end if

end for

It can be seen that the three-cut rearrange is equivalent to a four-cut
rearrange in which two adjacent cuts are identical.

The cut operation itself is accomplish@d by splitting crums which
straddle the cut location. The two new crums correspond to the two sides of
the cut. The children of the old crum are assigned to the new crums according
to which side of the cut they fallon -- any children which themselves straddle
the cut are split using the same procedure recursively. Cuts are usually made
in groups, with the cutting process terminating when a single crum spans all of
the cut location (this crum corresponds to the crum P in the algorithms above).
The following is the algorithm for cut:

cut (cutSet)
recursiveCut (cutSet, fulcrum)

end cut

recursiveCut (cutSet, parentCrum)
dontDiveDeeperFlag <-- TRUE
tor each child of parentCrum

end for

it (disp(child) .<. tirstCut(cutS@t» and (lastCut(cutSet)

end if

.<-. (disp(child) .+. wid(child»)
dontDiveDeeperFlag <-- PALSE
tor each cut in cutSet

cut <-- cut .-. disp(child)
end tor
recurs~veCut (cutSet, child)

1f (dontDiveDeeperFlag)
chopUp (cutSet, parentCrum)

end if
end recursiveCut

chopOp (cutSet, parentCrum)
for each cut 1n cutSet

tor each child of parentCrum

end tor
end chopUp

end for

split (cut, crum)

it (disp(child) .<. cut) and (cut .<-. (disp(child)

end if

.+. wid(child»)
neWChildSet <-- split(cut, child)
disown(parentCrum, child)
adopt (parentCrum, leftChlld(newChildSet»
adopt (parentCrum, rightChild(newChildSet»
break out of inner loop

leftCrum <-- createNewCrum ()
rightCrum <-- createNewCrum ()
disp(leftCrum) <-- disp(crum)

Apr 25 12:46 1984 -- III -- Enfilade Theory -- Page 6

wid(leftCrum) <-- cut .• disp(crum)
disp(r1ghtCrum) <-- cut
wid(rightCrum) <-- wid(crum) .+. disp(crum) .. cut
for each child of crum

if «disp(child) .+. wid(child» .<. cut)
adopt (leftCrum, child)

else if (cut .<=. disp(child»

else

end if

adopt (rightCrum, child)

neWChildSet <-- split(cut .. disp(child), child)
adopt (leftCrum, leftChild(newChildSet»
adopt (rightCrum, rightChild(newChildSet»

end for
result <-- makeChildSet(leftCrum, rightCrum)

end split

where makeChildSet(leftCrum, rightCrum) takes two crums and returns them in
some sort of ordered collection, leftChild(childSet) returns the first child
in such a collection, and rightChild(childSet) returns the other child~
adopt(parent, child) adds the crum child to the set of children of parent
and disown(parent, child) removes it (discarding child); createNewCrum()
creates a new, uninitialized crum; and firstCut(cutSet) returns the first (in
index space) cut in a set of cuts, and lastCut(cutSet) similarly return the
last one.

The append operation adds new elements to the data structure by
extending the range of index space covered by it and associating the new
elements with these extended index space positions.

The general algorithm to append a single new element to an enfilade is:

append (newThing, beyond, where)
potentialNewCrum <-- recursiveAppend (newThing, fulcrum, beyond, where)
if (notNull(potentialNewCrum»

levelPush (potentialNewCrum)
end if

end append

recursiveAppend (newThing, parent, beyond, where)
if (where .== .. 0.)

newCrum <-- createNewBottomCrum ()
data(newCrum) (-- newThing
w1d(newCrum) <-- naturalW1d(newTh1ng)
disp(newCrum) <-- disp(parent) .+. beyond
result <-- newCrum

else
for each child of parent

if (d1sp(child) .<=. where) and (where .<. (disp(ch1ld) .+.
wide child)))

potentialNewCrum <-- recursiveAppend(newThing, child, beyond,
where .-. disp(ch1Id»

break
end if

end for
if (notNull(potentiaINewCrum»

Apr 25 12:46 1984 -- III -- Enfilade Theory -- Page 7

if (numberOfChildren(parent) >- MaximumNumberOfCrumslnALoaf)
newCrum <-- createNewCrum ()

else

disp(newCrum) <-- disp(potentialNewCrum)
disp(potentialNewCrum) <-- .0.
wid (newCrum) <-- wid(potentlalNewCrum)
result <-- newCrum

wId(parent) <-- enwidify(children(parent), potentialNewCrum)
adopt(parent, potentialNewCrum)
result <-- NULL

end if
else

result <-- NULL
end if

end if
end recursiveAppend

where naturaIWid(dataltem) is a function that determines the wid of a bottom
crum associated with a particular data item and enwidify(crum1, crum2, ...) is
the widdative function which computes the wid of a parent crum from the wids
and disps of its children. The widdative function is one of the fundamental
operators that defines an .enfilade, along with .+. and .- .. The location
appended to is represented by the two arguments where and beyond which
indicate the position in the enfilade to which the new data element is to be
appended and the distance beyond that position that will define the new data
element's own position. The value MaximumNumberOfCrumslnALoat sets a limit
to the amount of "fanout" at each level of the tree.

Rnfiladic trees are generally balanced by maintaining the requirement that
the number of children of anyone crum (i.e., the number of crume in a loaf)
may not exceed a given threshold. In practice, since the structure of bottom
crums and upper crums aay differ, it is often the case that this threshold will
differ between bottom loaves and upper loaves. The actual values chosen for
these thresholds depend upon the actual entilade in question, and are typically
selected to optimize retrieval speed, disk space efficiency, or some other
eapirically determined, implementation dependent criteria.

The level push operation adds an additional level to the tree when an
append or insert operation causes the number of children of the fulcrum to
grow too large. It simply creates a new fulcrum from which is descended the
old one. The algorithm is:

levelPush (newCrum)
newFulcrum <-- createNewCrum ()
disp(newFulcrum) <-- .0.
wid (newPulcrum) <-- enwidify(fulcrum, newCrum)
adopt (newFulcrum, fulcrum)
adopt (newFulcrum, newCrum)
fulcrum <-- newFulcrum

end levelPush

where the argument newCrum represents the new sIblIng to the old fulcrum
from which is descended the branch of the tree which caused the old fulcrum to
overflow.

The ,insert operation adds a new data element at a random position in the

Apr 25 12:46 1984 -- III -- Enfilade Theory -- Page 8

enfilade. Insert is not a strictly necessary operation, since it is
functionally equivalent to an append operation followed by a rearrange
operation. The append adds the new item to the data structure and then the
rearrange relocates it to the desired location. In practice, insert is often
implemented as a separate operation, for reasons of efficiency or convenience.
An insertion is accomplished by making a cut at the desired insertion point,
extending this cut upwards to a crum whose wid is large enough to encompass the
data to be inserted, and then plugging the new material in. The disps of crums
.>. the new material at this level are then incremented accordingly. The
algorithm to accomplish this is left as an exercise for the reader in order not
to overly extend this paper.

The delete operation removes things from an enfilade. Delete, like
insert, is also not strictly necessary, since undesired material can be
relocated to any arbitrary "purgatory" by the rearrange operation. In actual
use, however, it often desirable to actually delete things in order to be able
to reclaim the storage that they occupy. The delete operation is quite simple:
two cuts are made on the boundaries of the unwanted region of index space and
propagated up to a common ancestor. The child crums of this ancestor which
lie between the cuts are then disowned and the disps of greater siblings
reduced accordingly. The disowned crums and all of their descendants may then
be deallocated or left for garbage collection.

Deletes and rearranges can result in an enfilade that is a badly
fragmented, unbalanced tree and in which many crums have fewer than the
optimum number of children. This in turn can result in a tree which has more
levels than necessary, with a potentially adverse affect upon performance. The
recombine operation is used to tidy things up by merging sibling crums. The
algorithm to merge two Siblings is:

primitiveRecombine (parent, sibling1, sibling2)
newCrum <-- createNewCrum ()
disp(newCrum) <-- disp(siblingl)
for each child of siblingl

end for

disown(siblingl, child)
adopt (newCrum, child)

dispCorrection <-- disp(sibling2) .. disp(siblingl)
for each child of sibling2

end for

disown(sibling2, child)
disp(child) <-- disp(child) .+. dispCorrection
adopt (newCrum, child)

wid(newCrum) <-- enwidify(children(newCrum»
disown(parent, sibling1)
disown(parent, sibling2)
adopt(parent, newCrum)

end primitiveRecombine

The term recombine is commonly used to refer to the process of climbing
around the enfiladic tree and selectively applying the above operation in order
to perform some general housecleaning. Such a process may also include cut
operations to split up recombined crums which have too many children, perhaps
interleaving cuts with primitiveRecombines in order to "shuffle" crums around
in the tree. The methods for doing this are heuristic rather than algorithmic,
and depend both on the nature of the particular enfilade in question and the

Apr 25 12:'6 1984 -- III -- Enfilade Theory -- Page 9

data with which it is being used. Certain applications may not, in fact,
require any recombines to be performed at all.

A recombine may also invoke a level pop operation to remove an excess
level from the tree. This can be performed when the fulcrum has but a single
child. The algorithm 1s s1mply:

levelPop ()
newFulcrum <-- theOneChildOf(fulcrum)
disp(newFulcrum) <-- disp(newFulcrum) .+. disp(fulcrum)
disown(fulcrum, newFulcrum)
fulcrum <-- newFulcrum

end levelPop

where theOneChildOf(fulcrum) extracts the fulcrum's (presumably) only child.

OBSERVATIONS

The use of wids and disps means that each crum in an enfilade is located
relative to its parent rather than to any absolute coordinate space. This in
turn means that enfilades may engage in sub-tree sharing. Multiple crums on
a given level of one or more enfilades may pOint to a single lower crum as one
of their children. This has the effect of making virtual copies of the
sub-tree represented by that crum and all of its descendents. The index
space position of the bottom crums of such a sub-tree depends upon the
particular parent crum through which they are accessed. Sub-tree sharability
and rearrangability, both the result of the localizing action of wids and
disps, are the two properties which most significantly distinguish enfilades
from other sorts of data structures.

One of the problems with multi-dimensional data is that, unlike one
dimensional data, there is, in general, no single well-defined ordering of the
data. K-ary trees (insert reference here) solve this problem using projection
onto a single dimension. Enfilades use the locality of wids and disps to
eliminate the need for ordering.

One of the many useful applications of sub-tree sharing is versioning
-- the creation enfilades which represent alternate organizations of a given
body of data. Often, alternate versions of some set of material will have
significant portions in common (insert reference on Reps I subtree sharing here)
(this, in fact, may be what we mean when we say two things are "versions" of
each other, rather than saying that they are separate things). Common portions
of two data sets can be represented by a single enfiladic sub-tree. Separate
data structure is only required where they actually differ. If the differences
between two versions are small relative to the total volume of data, the
storage savings can be significant. In addition, alterations to the shared
portions may also be shared, thus changing one data set can change the other
correspondingly, if this is desired.

The recombine operation must be reconsidered in the light of sub-tree
sharing. Recombination is not always desirable, even when an enfilade is badly
balanced, since it would be an error to recombine a shared crum with an
unshared one. The recombine operation must be carefully constructed, if used
at all, in applications where sub-tree sharing is expected.

Another interesting (and pleasing) property of enfilades is that they

Apr 25 12:46 1984 -- III -- Enfilade Theory -- Page 10

naturally and automatically tend to adapt themselves to take advantage of any
clustering of the data in index space. This is because crums are grouped
together into loaves according to the volume of material stored, rather than
according to the material's indices. In addition, it is often the case that
cuts will tend to occur in the less dense regions of the data structure. Over
a period of time, the various manipulations performed will tend to bring about
a helpful measure of correlation between patterns of sub-tree grouping in the
enfilade and patterns of clumping in the data that it stores.

SUMMARY

An enfilade is a tree structure in which the nodes, called crums, do not
directly store the indexing key, but rather a pair of localized abstractions of
the key called the wid and the disp. These represent the extent and
position relative to a parent in index space. Manipulation of an enfilade is
supported by the operations retrieve, append, rearrange, insert,
delete, recombine, cut, level push and level pop. Enfilades also
allow sub-tree sharing.

(FOOTNOTE 1: In the Xanadu nomenclature, the term node refers to a computer
system which is a member of a distributed data storage and communications
network. The term crum is preferred for reference to a node in an enfiladic
data structure. The extra term is introduced to avoid confusion, since the
full-scale Xanadu design involves both enfilades and computer networks.)

Apr 25 12:46 1984 -- IV -- Xanadu System Data Structures -- Page 1

Xanadu Hypertext System Data Structures

The current Xanadu backend is constructed using three essential data
structures:

1) the granf1lade, used to implement the grandmap

2) the poomfilade, used to implement orgls

3) the spanfilade, used to implement the spanmap

A fourth data structure, called the historical trace enfilade, used to
realize the historical trace facility, has been designed but not yet
implemented. In addition, alternate designs for the spanmap and the orgl,
called the drexfilade and the DIV poom respectively, are anticipated. All
of these data structures are described in this document. This document also
describes another important aspect of the Xanadu implementation: the numbering
system, tumblers, used to address entities in the system and the compressed
number representation, humbers, that allows tumblers to be stored to
arbitrary precision with reasonable efficiency.

TUMBLERS AND BUMBERS

A form of transfinitesimal number called a tumbler is used frequently
throughout the system. Tumblers are like the numbers used to identify
chapters, sections, sub-sections, pages, paragraphs and sub-paragraphs in many
technical manuals. They are represented externally as a sequence of integer
fields separated by periods ("~I) and internally as a string of integers.
For example, 3.2 and 47.23.137.0.5 are tumblers (the period is delimiter
for the human reader and is not essential to the fundamental notion of
what tumblers are).

A non-commutative arithmetic operation called tumbler addition is
defined. For example:

3. 5.10. 6
+ 2.16. 3

5.16. 3

This arithmetic gives different roles to the two tumblers: the first specifies
a position -- where something is -- and the second specifies an offset -- a
distance to move forward. In this example, only the first field of the
original position matters. A couple more examples are:

25. 6.46.93
+ O. O. 3. 1. 21

25. 6.49. 1. 21

O. O. 3. 1. 21
+ 25. 6.46.93

25. 6.46.93

The following rules describe the procedure for tumbler addition:

1) Evaluating from the most to the least significant fields (i.e., from
left to right), the fields of the final result are equal to the
corresponding fields of the initial position as long as the

Apr 25 12:46 1984 -- IV -- Xanadu System Data Structures -- Page 2

corresponding fields of the offset are zero.
2) The first non-zero offset field is added to the corresponding field of

the initial position.
3) The remaining fields of the final result are equal to the remaining

fields of the offset.

Since tumbler addition is non-commutative, there are two possible forms of
tumbler subtraction. We call these strong tumbler subtraction and weak
tumbler subtraction. The Xanadu system makes use of a generalized tumbler
difference operator defined as follows: when taking the difference of two
tumblers A and B, if A is greater than B then the result is obtained by
strongly subtracting B from A: otherwise the result is obtained by weakly
subtracting A from B. As a result, no subtraction operation is ever performed
that results in a negative tumbler. Like tumbler addition, tumbler subtraction
involves two operands with different roles: a position and a negative
offset. The difference between the two forms of tumbler subtraction is that
strong subtraction results in a tumbler which may be added to the negative
offset to get back to the original position, whereas weak subtraction involves
simply applying the same essential procedure as tumbler addition with field
subtraction substituted for field addition.

Here are some examples of strong tumbler subtraction:

1.4.3
s- 1.1.1

0.3.3

Note that:

1.1.1
+ 0.3.3

1.4.3

0.1.2.3.4.5
s- 0.0.1. 2 • 3.3

0.1.2.3.4.5

0.0.1.2.3.3
+ 0.1.2.3.4.5

0.1.2.3.4.5

0.1.2.3.4.5.6
s- 0.1.2.3.3.3.3

0.0.0.0.1.5.6

0.1.2.3.3.3.3
+ 0.0.0.0.1.5.6

0.1.2.3.4.5.6

The following rules describe the procedure for strong tumbler subtraction:

1) Evaluating form the most to the least Significant fields (i.e., from
left to right), the fields of the final result are equal to zero as
long as the corresponding fields of the initial position and the
negative offset are equal to each other.

2) The first non-equal field of the negative offset is subtracted from
the corresponding field of the initial pOSition.

3) The remaining fields of the final result are equal to the remaining
fields of the initial position.

Here are some examples of weak tumbler subtraction:

1.4.3 0.3.3.3.4.5.6 0.1.2.3.4.5.6
w- 1.1.1 w- 0.1.1.3.3.3.3 w- 0.0.0.2.3.4.5

----- ------------- -------------
0 0.2 0.1.2.1

The following rules describe the procedure for weak tumbler subtraction:

Apr 25 12:46 1984 -- IV -- Xanadu System Data Structures -- Page 3

1) Evaluating from the most to the least significant fields (i.e., from
left to right), the fields of the final result are equal to the
corresponding fields of the initial position as long as the
corresponding fields of the negative offset are zero.

2) The first non-zero negative offset field is subtracted from the
corresponding field of the initial position.

Tumblers are used in the Xanadu system because of their accordion-like
extensibility. They have the property that, like both real and rational
numbers, between any two numbers are infinitely many more. Tumbler-space has
a porosity that allows any amount of new material to be inserted at any pOint.

Tumblers are stored internally using Humbers. "Humber" is short for
"Huffman encoded number" or "huge number". A humber is a form of infinite
precision integer used to represent the fields of tumblers. Use of infinite
precision integers prevents constraints on the size of a tumbler's field due to
a restriction to, for example, 32-bit numbers.

Humbers are constructed out of 8-bit bytes. If the high-order bit of the
first byte is 0, then the remaining 7 bits encode the number itself, with
possible values ranging from 0 to 127. It the aforementioned bit is 1, then
the remaining 7 bits encode the number of bytes in the number, and that many
bytes then follow which contain it. Should more than 127 bytes be required to
represent the number, the length zero (i.e., a high order bit of 1, followed by
seven O's) indicates that what follows is a humber (applying this definition
recursively) that encodes the length, followed by the indicated number of bytes
encoding the number.

This representation never runs out of preciSion and can represent any
non-negative integer whatsoever (and, in fact can represent negatives with
minor modification). In addition, most tumbler fields in the Xanadu system
are small (i.e., less than 127) and thus can be encoded in a single byte.
Tumblers are represented in a floating-point like format, with a mantissa
consisting of a field count humber followed by the indicated number of field
humbers, and an exponent humber indicating the number of leading 0 fields
(leading since tumblers are transfinitesimals).

Tumblers are used in the Xanadu system as both V-stream addresses and
I-stream addresses. We perform some tricks with these addresses by encoding
some information about the thing addressed in parts of the tumbler itself. In
particular we use fields with the value "0" as a delimiter to separate one part
of a tumbler from another. For example, the "0" in 4.3.7.0.19.1 separates the
tumbler into the two pieces 4.3.7 and 19.1. Of course, the pieces have to be
constrained to not contain any "O"s themselves. Note also that the pieces are
themselves tumblers.

USing the O-field-as-delimiter scheme, an invariant orgl identifier is
represented as a tumbler of the form:

<node>.O.<account>.O.<orgl>

where <node>, <account> and <orgl> are tumblers that don't contain "0" as
one of their constituent fields. The <node> component is there in anticipation
of future implementations which store orgls in a distributed network, and
represents the particular node of that network with which the orgl is
associated. <account> similarly anticipates future mUlti-user systems, and

Apr 25 12:46 1984 -- IV -- Xanadu System Data Structures -- Page 4

represents the particular user or account (i.e., user associated with node
number <node» which owns the orgl. <orgl> indicates which particular one of
that user's orgls is desired. For example, 5.0.3.2.0.11 indicates the 11'th
orgl belonging to the 3.2'nd user on the 5'th node. In the present single-node
single-user system, addresses all resemble O.O.<orgl> with the <node> and
<account> components being empty.

Both V-stream and I-stream addresses are tumblers of the form:

<invariant orgl id>.O.<v-space>.<position>

where <invariant orgl id> is tumbler representing an invariant orgl
identifier of the form described above and <v-space> and <position> are
inteqer fields. <v-space> specifies which virtual space of the orgl in
question is desired, and <position> indicates a particular atom within that
v-space. Thus 5.0.3.2.0.11.0.41.23 denotes the 23'rd atom of the 41'th v-space
of the orgl specified in the previous example.

Use of the "0" field as a delimiter to concatenate the various components
of addressing information into a single tumbler allows a single tumbler-space
to contain all possible V-stream or I-stream addresses. This in turn
simplifies the construction of data structures that use V-stream or I-stream
space as their index space by eliminating any need for dealing with the various
comPonents separately.

Future plans may include support for an extended indirect V-stream address
ot the form:

<v-stream address>.<v-space>.<virtual position>

where <v-stream address> is a V-stream address of either this form or the
previous one. This notation allows the immediate specification of atoms via
orgls which are themselves within other orgls. For example,
5.0.3.2.0.11.0.41.23.2.1 would indicate the l'st atom of the 2'nd v-space of
the orgl addressed in the previous example (assuming, of course, that it was in
fact an orgl and not a character atom).

The porosity of tumbler space enables new addresses to be created easily
without conflict with previously created ones. For example, node 5 from the
past few examples could create a new node 5.1 without requiring knowledge of
whether, say, node 6 existed or not. Orgl ids for new versions of previously
existing orgls are created this way. For example, the first new version of
orgl 1.0.2.0.3 would be 1.0.2.0.3.1 and the next would be 1.0.2.0.3.2.

Physical storage locations are not, in general, represented using
tumblers. Instead they have a form which is entirely dependent upon the
nature and quantity of the underlying storage hardware and the dictates of the
operating system software which interfaces with that hardware.

THE GRANFILADE

The granfilade is one of the three major data structures inside the
Xanadu system, and probably the simplest. It is used to implement the
grandmap, providing a means of looking up atoms by their I-stream addresses.
As its name suggests, the granfilade is an enfilade.

Apr 25 12:46 1984 -- IV -- Xanadu System Data Structures -- Page 5

The index space used by the granfilade is I-stream tumbler space. The wid
of a granfilade crum is a tumbler specifying the span of I-space beneath the
crum (i.e., the distance, in tumbler space, from the first to the last bottom
crum descended from it). The widdative function is tumbler addition, therefore
a crum's wid is simply the tumbler sum of its children's wids. Bottom crums
have an implicit wid of 0.0.0.0.1 (i.e., spanning no nodes, no accounts, no
orgls, no V-spaces and spanning a single atom). Granfilade disps are tumbler
offsets in I-space from the parent crum.

Bottom crums in the granfilade represent atoms. Atoms come in two
varieties: characters and orgls. Character bottom crums are stored as spans of
characters, rather than individual bytes. These consist of a pointer to a
block of physical storage, either in core or on disk, containing the bytes
themselves, and an (integer) length, telling the number of bytes in the block.
Since each of these bytes has an implicit wid of 0.0.0.0.1, the character span
has a wid of O.O.O.O.<number of characters in the span>. Orgl bottom crums are
stored in a similar fashion, but instead of literal data bytes, pointers to the
fulcrums of orgls (poomfilades) are stored.

To obtain the atom associated with a particular I-stream address, an
enfilade retrieve operation is performed (see accompanying paper on enfilade
theory). Starting with the fulcrum, the wid is subtracted from the desired
I-stream address, and the child crum is selected whose disp comes closest to
the modified I-stream address without going over it. The process is then
repeated with this child crum and the modified I-stream address as the targe~.
At the bottom, the (by now much reduced) target address is used as an index
into the appropriate character or orgl span to select the desired atom. It is
quite possible to find that there is no bottom crum associated with a given
I-stream address, since tumbler space is porous (i.e., between any two tumblers
are infinitely more tumblers).

Although the grandmap is said to simply map from I-stream addresses to
physical storage locations, a retrieval operation on the grandmap may involve
looking up the disk locations of the atoms in the granfilade, bringing the
atoms themselves from those locations into core, and then returning the core
addresses. This is something more than a simple lookup operat10n.

In practice, retrieves are performed upon a whole span at once, returning
a number of atoms (which is specified in the retrieve request) starting at the
given index space location. The length of the span to be retrieved is also a
tumbler, due to the porosity of tumbler space.

The only operations performed upon the granfilade are retrieve and append,
although there are an infinite number of potential places to append to (one
such place for each possible V-space or each possible invariant orgl id). The
granfilade is never cut, deleted from or rearranged. It simply accretes data
monotonically, and then allows it to be quickly regurgitated. For this reason,
it is quite reasonable to store the bottom and interior crums of the granfilade
on an unchangeable medium, such as write-once optical disks.

THE POOMFILADE

The second major data structure inside the system is the poomfilade.
~he poomfilade is used to implement orgls. POOM stands for Permutations On

Apr 25 12:46 1984 IV -- Xanadu System Data Structures -- Page 6

Ordering Matrix. The poomfilade represents something functionally similar,
though not identical, to a permutation matrix: a sparse binary matrix in
tumbler space, one axis of which represents the V-stream and the other the
I-stream. A "1" at a given coordinate indicates that the orgl realized by the
matrix maps that coordinate's V-stream axis location to and from its I-stream
axis location. A "0" indicates that no such mapping exists. This would be
a permutation matrix but for virtual copies, which result in a mapping between
a single I-stream location and a number of V-stream locations, allowing a given
I-stream "column" of this matrix to have more than one "I" entry. In addition,
the previously mentioned porosity of tumbler space results in an infinite
number of "rows" and "columns" which are all "O"s.

The index space used in the poomfilade is two-dimensional cartesian
tumbler space. The disps and wids of poomfilade crums are ordered pairs of
tumblers representing the positions and extents, respectively, of rectangles in
this space. The positions (disps) draw their origin relative to the parent
cmm. The widdative function is construction of the minimum enclosing
rectangle of the rectangles represented by all the children in a loaf.

Bottom crums in the poomfilade are identity matrices, representing V-spans
that map without internal alteration onto I-spans. These are stored as a
position (disp) along with a single value for extent (since identity matrices
are, by definition, square). It is not necessary to actually store the "l"s
and "O"s themselves. .

Retrievals are performed on the poomfilade using one axis as the indexing
axis and the other as the data axis. Extracting information consists of
recursively delving into the boxes represented by the rectangles crossing the
rows or columns of interest. A rearrange performed along the V-stream axis
implements the corresponding primitive orgl edit operation (see the
accompanying paper on the Kanadu system architecture) on the V-stream order of
the orgl that the poomfilade represents. The other edit operations are
implemented by manipulating the poomfilade in a siailar fashion. Virtual
copies are implemented using sub-tree sharing.

THE DIV POOM

The DIV poom is an extended design for the poomfilade that is planned
but not yet implemented. The DIV poom is similar to the poom, but adds a
third dimension to enable the determination of the orgl of origin of material
that has been virtually copied. The third dimension is orgl (or "document",
for historical reasons, hence the "D") of origin of the I-span. Bottom crums
are still planar identity matrices, but associated with each is a position on
the I-stream corresponding to orgl of origin for the span represented. Upper
crums represent three-dimensional bounding rectangular prisms, although the
enfilade is otherwise the same as the basic poomfilade.

THE SPANFILADE

The Xanadu system's third major data structure is the spanfilade. The
spanfilade is used to implement the spanmap, a mapping from the I-stream to
the O-stream (the subset of the I-stream whose atoms are ' orgls).

The spanfilade is similar to the poomfilade in its higher level structure

Apr 25 12;46 1984 IV -- Xanadu System Data Structures -- Page 7

-- crums represent recursively nested boxes, and the widdative function is
still minimum enclosing rectangle. The bottom crums are different, however,
as is the interpretation of the axes.

The two axes represent the I-stream and the O-stream. In addition, the
data structure is partitioned along the O-stream axis into independent
segments, each of which spans the entire O-stream but represents the spans
referenced from a particular V-space (this partioning is like having a set of
parallel spanfilades, one for each V-space). Such a partitioning enables
retrievals to be readily restricted to orgls from particular V-spaces.

Bottom crums represent I-spans referenced by a particular orgl in a
particular V-space. A Bottom crum contains an O-stream position (relative to
its parent crum), representing the I-stream address of a referencing orgl, an
I-stream position (also relative to the parent crum), representing the start of
an I-span, and an I-span length. The first two of these together constitute
the bottom cruz's disp, while the third is the crum's wid.

Retrievals are performed on the spanfilade using I-spans as the indexing
elements. The result of such a retrieval is a set of I-stream addresses
corresponding to the orgls which map some segment of the V-stream onto the
I-span used as the key.

THE DREXFILADE

The drexfilade is a much improved deSign for the spanmap which will
replace the current one as . soon as possible. The drexfilade is also similar in
flavor to the spanfilade, the poomfilade and the DIV poom (in fact, these are
all part of a family which we call N-dimensional enfilades, where, in this
case, N is 2 or 3). It is three dimensional binary matrix, with the three
dimensions representing the O-stream and the starting and ending I-stream
addresses of I-spans. Bottom crums are single points (the 1/11/ s of the matrix).
The interpretation of this matrix is as follows; a point is ulu (i.e., present
in the data structure) if and only if the I-span it denotes on the two I-stream
axes is present in (i.e., mapped to in full by) the orgl denoted by its
O-stream axis position.

The drexfilade avoids some unfortunate combinatorial problems with the
spanfilade. It also allows queries about arbitrary patterns of overlap between
particular I-spans and the spans mapped to by the orgls, in addition to queries
about simple enclosures.

THE HISTORICAL TRACE ENFILADE

The historical trace enfilade is certainly the most complex Xanadu data
structure. Implementation has therefore been deferred until the more basic
portions of the system are fully functional.

The underlying representation of an orgl is a sparse binary mapping
matrix. Each of the primitive editing operations which the system supports
rearrange, append, insert and delete -- is expressed as a transformation matrix
that the poom is multiplied by to obtain the new, edited orgl. Note that the
initial state of an orgl is a single identity matrix. When an edit operation
is applied to this identity matrix, the resulting orgl is the transformation

Apr 25 12:46 1984 -- IV -- Xanadu System Data Structures -- Page 8

matrix for that edit itself. From this it may be seen that each edit
transformation matrix is in some sense an orgl itself, mapping from the old
V-stream order of the orgl to the new V-stream order.

The matrix product of several of these transformation matrices is itself
a transrormation matrix for a slngle transformation that is equivalent to the
constituent transformations applied individually. The product of all the
transformations 1n the history of an orgl (not including alternate versions) 1s
in fact the orgl itself.

The history of a phylum consists of the sequence of changes which have
been made to its orgls over time. In the case of a phylum for which no
versioning has taken place, this is a linear series or operatiOns. Whenever a
new version is introduced, the sequence of changes branches and becomes a tree.
One way of visualizing this is as a wire frame tree with beads strung along the
wires. Each bead represents a single primitive change to an orgl. It is this
tree which forms the index space of the historical trace enfilade. There are
thus two trees to keep in mind: the enfiladic tree -- the data structure itself

and the tree-shaped index space in which the enfilade resides.

Locations in the index space -- points in the history of a the phylum -­
are expressed as a path through the history tree. The tree is structured so
that there are only binary branches. A path can be represented by distances
(in units of Single edit operations) interspersed with direction changes. If,
with a binary tree, we follow the convention of always taking, say, the right
branch unless otherwise directed, a path can be represented as a series of
distances, between which are implicit left turns.

An enfilade is constructed in this space by grouping crums over regions of
the tree (see the attached diagram). Each of these regions bas a slngle
entrance and zero or more exits. A crum's index wid is the set of paths
through it to farther siblings. Its index disp is the path to its entrance
relative to the entrance to its parent. The index widdative function is path
concatenation.

The bottom crums of the historical trace enfilade are transformation
matrices for the individual edit operations. These are quite Simple. The
~ndex wid of a bottom crum is a Single step along the historical trace.

In addition to its index wid, each crum also has a data wid. In the
case of a bottom crum, this is the primitive transformation matrix that the it
stores. In the case of an upper crum, the data wid is the matrix product of
the data wids of its children. The data wid of a crum is thus the full
transformation achieved by traversing the segment of the tree which it covers.
This is in turn a poomfilade, constructed using sub-trees which are shared with
the historical trace crum's children's data wids. The historical trace is thus
an enfilade constructed from enfilades! Note that, because of branching in the
historical trace tree, a crum aay have a number of matrices in its data wid -­
one for each path across the it. There is a one-to-one correspondence between
the matrices in the data wid and the paths in the index wid. The data disp
of an historical trace crum is implicitly the matrix product of the data wids
of the crum's siblings along the path between the crum and the entrance to its
parent.

A retrieval on the historical trace is accomplished by multiplying
together the data disps of the crums descended through on the way to the bottom

Apr 25 12:46 1984 -- IV -- Kanadu System Data Structures -- Page 9

crum located at a particular point on the history tree. The result is a poom
for the orgl that existed at that point in the phylum's history. In practice
it is not necessary to actually multiply whole matrices together, since the
object of interest is not the tinal matrix itself but the aapping which it
represents. It is sufficient to simply aap whatever V-spans are desired
through each of the disp matrices. This is equivalent to multiplying the
matrices, but only requires dealing with the particular spans of interest,
rather than the whole product orgl.

Apr 25 12:46 1984 -- V -- xanadu System Implementation -- Page 1

Xanadu Hypertext System Implementation

This document describeshe state of the current Xanadu implementation as
well as a couple of other miscellaneous aspects of the xanadu system design
that have no other place to go: the frontend-backend interface and the
core/disk memory model.

THE CURRENT IMPLEMENTATION (AS OF APRIL 1, 1984)

The system currently operates in a dedicated single-user mode. Support
for multiple users/processes is anticipated as soon as funding permits.
Multi-user Xanadu will be implemented as a transaction based system.

The present system supports an older interface paradigm in which orgls are
separated into two classes called documents and links. Support for orgls
in the sense that they are described in these documents will entail a change to
the interface layer but not to the system proper.

The present implementation uses the older spanfilade and poomfilade
designs (described above) rather than the newer drexfilade and DIV poom. In
addition, as was mentioned earlier, historical trace has not yet been
implemented.

Tumblers are currently stored internally using a fixed-size structure,
rather than using the variable-length humber representation described here.
This results in a substantial storage use inefficiency.

The single-user backend is written in C and runs under the Unix family of
operating systems. The code,· however, uses a minimum of operating system
services and was written with portability in mind, so transfer to other systems
is relatively straightforward. Multi-user will by necessity be somewhat more
system dependent, but that limitation bas not yet arrived.

THE PRONTEND/BACKEND INTERFACE

The Xanadu system makes a strong distinction between the data storage,
retrieval and organizational functions and tbe user interface, display
management and data formating functions. Tbe latter are the responsibility of
a separate frontend. The frontend is a program that runs as a separate
process, possibly on a separate computer, and accesses the capabilities of the
backend via some sort of data communications line or I/O channel. The
backend implements the functions described in this set of documents in as
application independent a fashion as possible.

The backend and the frontend interact via an interface language called
Phoebe. This language allows programs to express requests to the backend to
perform any of the functions described in these documents. The backend then
responds with the requested data, or by performing the requested manipulation
and returning an indication of whether or not it was able to do what was asked.
The full interface language specification is not yet complete since our
conception of the virtuality of the system has recently changed and the
interface is being redesigned to take advantage of this. The interface
protocol for the older virtuality is the one recognized by the current
implementation. This protocol is described in one of the attached documents.

Apr 25 12:46 1984 -- V -- xanadu System Implementation -- Page 2

Phoebe will be described in detail in a future document.

THE CORE/DISK MEMORY MODEL

The present design assumes a two-level memory model: the hardware upon
which the system is running has a limited quantity of high speed, random
access memory which is immediately accessible, which we call core, and a much
larger quantity of slower, less immediately accessible memory, called disk.
The terms "core" and "disk" are chosen for convenience, and do not necessarily
reflect the technology used to realize them.

Core is assumed to be a limited resource, restricted to a relatively small
aaount (e.g., a few megabytes per active process). Disk is not so constrained,
and the model assumes that the amount of disk storage available is effectively
unlimited. This is not to say that the system requires an infinite amount of
disk space, but merely enough to contain all of the data that it is being asked
to manage.

The contents of all of the system's data structures are stored permanently
on disk. As used, they are also moved into core. All reading into core and
writing out to disk is under the system's direct control. Swapping occurs at
the data structure level, therefore use of a traditional demand-paged virtual
.emory system is not advantageous. The general rules for managing core storage
are

1) all alterati~ns to data structures must be performed in core,
2) if a crum is in core, then all of its ancestors must also be there,
3) within the above two constraints, try to keep as much aaterial in

core as possible.

Core is assumed to be less than totally reliable, in the sense that a
system crash may cause any information stored there to be lost. Disk is
assumed to be more reliable, and care is taken to ensure that the sequencing of
transfers between core and disk preserves the integrity of data stored on
disk. This in turn helps ensure that system failures leave the disk in a
consistent state so that recovery is possible. The procedure for changing data
stored on disk is: first, bring the data into core; second, perform the actual
change: third, write a new copy out to diSK; and finally, after verifying that
what was written to disk was correct, write out to disk some indication that
the new copy is now the active one.

The optimum procedure for managing core use in an environment that already
has an underlying virtual memory mechanism is unclear. We feel that the
Xanadu system itself can anticipate its own storage requirements and decide
what to swap and when to swap it better than the algorithms used in typical
demand-paged virtual memory systems. In some systems, however, it may not be
practical to "turn off" the virtual memory. The best course in such a case is
a matter for further study.

Apr 25 12:46 1984 -- VI -- Xanadu Hypertext Virtuality -- Page 1

Xanadu Hypertext Virtuality

This document describes the Xanadu Hypertext virtuality -- the way it
appears to outside users and the conventions we have established to make it
appear that way.

The Kanadu virtuality is based on two primitive organizational structures:
documents and links. A document represents some set of data, while a
link represents a meaningful connection between some data in some documents.

A document consists of an ordered collection of characters together with
an ordered collection of links. This is represented by an orgl. A document
orgl's first V-space, called the text space, contains (only) characters. Its
second V-space, called the link space, contains (only) links (described
below). It does not have any other V-spaces.

A link consists of three ordered sets of spans of characters and links
inside documents. These sets are called end-sets. The first of these three
end-sets is called the from-set and the second is called the to-set. The
link represents a directional connection from the material in the from-set to
the material in the to-set. The third end-set is called the three-set and
designates material pertaining to the nature of the link itself (i.e., what
type of link it is or why it is there). Like a document, a link is represented
by an orgl. A link orgl has three V-spaces, one for each end-set. These
V-spaces are unconstrained as to what type of atoms they should contain. It
is conventional, however, to structure link retrieval requests to ask the
V-stream addresses of the contents of the end-sets, rather than asking for the
atoms themselves. This is because a link represents a connection from one
place (or set of places) to another, in addition to representing a connection
from one set of atoms to another.

By convention, the first thing in a link's three-set represents a link
type. Link types are represented by standardized, conventionally agreed upon
V-stream addresses. The number of possible link types is unlimited, but a few
standard types are defined by convention for the purposes of storing and
organizing literary information. For example:

Jump link -- represents a simple connection from one place to
another. A jump link indicates that such a connection exists. The major use
of a jump link, as its name suggests, is to designate a possible jump from one
body of material to another.

Quote link -- represents a quotation. The material in the to-set is
embedded at the location defined by the first element in the from-set. This
allows a quoted material to be expanded in its original context from quoted
fragments.

Footnote link -- represents a footnote. The material in the to-set
represents footnote-like commentary on the material in the from-set. The
frontend may choose to display the to-set like a printed footnote by showing
th text in the to-set at the bottom of the screen. The footnote link is
intended to be used by the authors of documents to point t digressve matrial
just as print footnotes are used.

Marginal note link -- represents a note "scribbled in the margin".
A marginal note link is similar to a footnote link, but is intended to be used

Apr 25 12:46 1984 -- VI -- Xanadu Hypertext Virtuality -- Page 2

by the readers of a document to point at reader created commentary on the
material linked from. It may be desirable for frontends to disply marginal
notes differently, as well. Also, it may be desirable to restrict retrieval of
marginal note links to those with specific authors, whereas one probably wishes
to retrieve footnote links in a less restricted manner.

Other useful link types are certainly possible, and what these should be is a
matter to be settled between the designers of frontends and the users of
system. Various kinds of semantic intent could be indicated by link types, in
addition to regulating display and retrieval functions (e.g., by allowing the
link type to indicate a perceived contradiction or agreement between the
contents of the from-set and the to-set). Additional link types may also be
desirable in order to support non-text or non-literary applications.

The model for this virtuality is an abstraction of what we feel are the
tundamental underlying mechanisms of common paper-based literature systems
(e.g., "the scientific literature"). Such generally consist of a corpus of
writings -- documents -- in the form of papers, articles, book, tcialrrt, esonde
explicit and implicit connections -- links -- such as citations, references,
quotations, bibliographies, "in jokes", etc. "Electronic literature" is the
primary application or which the Xanadu system was designed. It is our belief
that, in order to supplant paper-based systems, electronic systems must
preserve and enhance the capabilities already present in paper in addition to
providing new capabilities hitherto not widely used.

Apr 25 12:46 1984 -- VII -- Future Directions for Xanadu -- Page 1

Future Directions for Development of the Kanadu Hypertext System

This document describes future work to be done on the system to bring it
from its current state as a fragile, partially functional single-user, single
processor prototype to a robust, full-fledged, multi-user distributed system.
Some of the tasks described here are necessary before the system will be
minimally usable. Other tasks lead to more advanced functionality. The tasks
are listed roughly in order of priority, but the actual order of implementation
may vary depending on funding and customer priorities. Each task includes a
description, a justification and a very rough estimate of the level of effort
required to complete it, given the present type of development environment
(programming in C under the Unix operating system).

Fix the various known bugs in the present system:
There are a few things that are just plain wrong and need to be corrected.

In particular: links currently do not follow through to versions; there are
some garbage collection glitches, especially when things get complicated; there
used to be a persistent off-by-one error deep inside the code which was fixed
and several places that worked by compensating for it themselves are now
broken. At this time, none of these bugs are serious, in the sense that they
interfere with the current capabilities of our demonstration system. They will
become more important as work on the system proceeds. We estimate that these
wIll be fixed in the course of debugging the system as a whole.

Modify to use variable-length tumblers:
The current fixed-size representation requires 40 bytes for each and

every tumbler used in the system. Conversion to variable length will reduce
this considerably. Most tumblers are quite small and in the variable-length
format will require as few as 3 bytes. This will tremendously increase disk
and memory efficiency. It will also speed things up because the amount of
processing that may be performed in-core without swapping to disk will be
increased. Also, any given operation on the data structures will have fewer
bytes to shuffle. We have devised a plan for making the transition to
variable-length tumblers in several independent steps. The first step involves
modification of the low-level tumbler routines to handle tumblers in either
format. Mext, the various higher-level routines get converted one-by-one to
use the variable-length format. Once the correctness of these modifications
is verified, the fixed-length capabilities are finally removed from the low­
level tumbler routines. This is a fairly involved process and may take a
couple of man-months.

Install the drexfilade and the DIV poom:
These improved data structures are needed to permit realization of the

full virtuality of our design. Portunately, the higher level routines for
N-dimensional enfilades, which the current spanfilade and poomfilade share, can
also be used with little or no modification for the drexfilade and DIV poom.
The lower level routines, which ·deal with bottom crums, and the routines which
actually use the data structures to respond to requests will, of course, need
to be modified. Conversion will be a tNo step process. The first step
involves installing the new data structures and getting the system to work as
it did with the old data structures. The second step involves adding the
functionality which the new data structures provide that the old did not.

Apr 25 12:46 1984 -- VII -- Future Directions for Xanadu -- Page 2

These two steps together will probably require several man-months.

Specify and implement the new frontend/backend interface protocol ("Phoebe"):
A new protocol is required to reflect recent important changes in the

system virtuality. Before the beginning of this year the notions of document
and link were deeply embedded in the system design. In particular, the current
frontend/backend interface protocol reflects the restricted functionality
provided by documents and links rather than the more generalized functionality
provlded by unconstralned use of orgls. The recent generalixation to orgls
soaewhat reduces the range of possible requests that the frontend can give to
the backend, but the remaining requests become much more complex. In addition,
the conversion from the spanfilade to the drexfilade greatly increases the
number of different kinds of restrictions that may be applied to retrieval
operations.

Specification of a new protocol will involve an in-depth examination of
the capabilities of the new virtuality in order to determine a set of requests
that provides access to all of the system's capabilities without undue
complication. Once the request set is determined, the format of the requests
themselves and the grammar for the interface language will have to be designed.

Implementation of the new protocol will involve the construction of a new
input parser for the backend and a nearly complete rewrite of those high-level
routines directly responsible for fielding requests.

Both the specification and the implementation will be fairly large
undertakings. We estimate a month for specification: a week to get the ideas
sorted out, a week to figure out the request set, a week to design the grammar
and a week to write it all down. Specification of the interface is a necessary
precursor to much frontend work. Implementation will take somewhat longer:
a few weeks to code and debug the parser and a month or aore to rewrite the
request handling routines. Implementation of the new protocol need not follow
i .. ediately upon completion of specification.

Optiaize code around bottlenecks:
The system was implemented with a greater emphasis placed on things that

could be readily made to work with the proper algorithmic efficiency, rather
than on things that were efficient at a low level. As a consequence there are
some pieces of code that are clear, correct and understandable and horribly
slow. Some performance studies need to be done in order to find out where the
real bottlenecks are. We have been hampered in conducting such studies by the
state of the current release of Unix on our computers, in which the performance
analysis and profiling tools do not work correctly. Performance studies have
therefore been deferred until a newer release of the operating system software
becomes available. The actual work of streamlining our system is an ongoing
task. As with any complex system, there is a bottomless list of things that
can be done to speed it up.

Implement the historical trace facility and design the protocol to use it:
Historical trace is a separable piece of the system, in the sense that

the system will work without it. Implementation was therefore deferred until
the rest of the system worked. Historical trace can be accomplished in two
stages. In the first stage we build the historical trace tree with the

Apr 25 12:46 1984 VII -- Future Directions for xanadu -- Page 3

individual reversible edit changes at the bottom of the data structure but
without the higher level aggregate matrices. This results in a simple
branching edit log allowing retrieval of any version by tracing the individual
edits in sequence from the current orgl. This works, albeit very slowly. In
the second stage we erect the higher level data structure and speed things up,
at the price of greater complication. The first stage, called slow historical
trace, is relatively straightforward and can probably be accomplished in a
month or two. The second stage, fast historical trace, is a major project
and may require several months. Once slow historical trace is in place and the
interface protocol is designed to use it, implementation of fast historical
trace will be transparent to the user (except that it will be faster, of
course). It is likely, however, to be somewhat challenging to implement.

Develop version archiving and "garbage collection" facilities:
Material stored in the xanadu system accretes monotonically. Mechanisms

must be developed to identify unreferenced or little used material and reuse
the space it occupies while archiving it in some sort of low-cost long-term
storage. Mechanisms to allow material to be permanently discarded may also be
desirable. In addition, storage and time inefficiencies are introduced by orgl
fragmentation as a result of SUbstantial numbers of edit changes. One way of
dealing with such fragmentation ist make a "cleancopy"of the material in
the orgl at some time "t ll and then provide an orgl aapping from V to V(t) (the
V-stream order at time "t") in addition to the mapping from V to I. The major
unresolved issue is the mechanism for deciding when a "clean copy" of some orgl
should be made. Facilities such as these need to be both designed and
implemented. For the first pass, we estimate a month to analyze the underlying
problems and design solutions. The length of time required to realize the
resulting design is unclear, but we guess that it would be on the order of a
few months.

Implement multi-dimensional orgls:
In the present design, orgls represent linear (i.e., one-dimensional)

collections of atoms. The generalization of the underlying data structures to
higher dimensions is straightforward, but the implications of dOing this are
not clear. Further study is required to determine the desired virtuality for
such a system and the protocols for controlling it. We estimate a few months
of study and design work, and an unknown (but certainly greater) amount of
implementation work.

Implement support for multiple-users:
This is essential. It is also the biggest single task in the list of

tasks so far. The implementation of multi-user Xanadu will involve a greater
degree of operating system dependence than is found in the present system. Our
present notions of how to proceed are based upon 4.2 bsd Unix as the
anticipated host operating system. CUrrent plans call for multi-user xanadu to
be implemented as a transaction-based system. The idea is to split backend
requests into series of the simplest possible primitive transactions which
involve in-core data structure operations. These operations don't involve
interaction with disk storage. Disk accesses are handled by xanadu's virtual
memory manager. A number of host dependent design issues are partially
unresolved, and will remain so until the host environment is determined. These
include:

-- What is the most appropriate memory management scheme for the

Apr 25 12:46 1984 -- VII -- Future Directions for Kanadu -- Page 4

backend, given the host system's own underlying memory management? In
particular, how do we go about sharing memory between processes?

-- What is the most appropriate way to deal with multi-processing in
the backend? In particular, should the backend be split into several separate
processes, and if so, how?

-- The complete mechanisms to handle berts must be designed.
-- Access protection and authority control mechanisms must be designed.

Once the complete multi-user system is designed, it must then of course be
implemented. We estimate a month to study the host system, two months to
design and specify the multi-user backend work, and six months to implement it.
However, such time estimates are, at best, educated guesses at this stage.

Various design improvements and corrections:
There are a few things which we would like the system to do that the

present design cannot. We have ideas as to how these various problems can be
solved, but the ideas need to be refined. For example:

-- It cannot distinguish between the "original" of some material and a
virtual copy if both the original and the copy are in the same orgl. This
problem derives from the fact that virtual copies are made of I-spans, whereas
they are referred to externally in terms of V-spans. The DIV Poom was the
first step to solving this problem: in the original design, there was no way to
distinguish between the original and the copy at all, even if they were in
different orgls. The third axis of the DIV poom encodes the orgl of origin of
a V-span (as opposed to the orgl of appearance). However, this does not
enable us to determine where in that orgl the span came from, since this is
potentially variable. Two possible ways of solving this problem are to change
the way I-stream space is structured to embody a difference between copies of
things, or to somehow dynamically keep track of how the V-stream address of a
span shifts over time. Neither of these solutions is very well defined right
now.

-- The system does not deal with the time dimension of material very
well. In particular, we would like to be able to perform restricted retrievals
using time as one of the dimensions of restriction. It seems like it would be
relatively straightforward to time-stamp orgls as to their time of origin and
most recent time of change. Adding time-wids to granfilade crums would also
aid in filtering retrievals. As with the previous example. there appear to be
things that we can do. but they need much more thought. Dealing effectively
with the time dimension is something that we feel will be essential to many
applicatiOns of the system.

-- There is undoubtedly a lot of tuning and refining that can be done
to make things more efficient. We do not assume that our architecture is
optimum.

These tasks are, by their very nature, rather vague and open-ended. Much
of the work to be done in this category involves solving unsolved design
problems. It is difficult to estimate how long this will take when the
result is, by definition, not known. We do, however, have some ideas about how
to proceed on some of these problems and feel that they are not insoluble. The
design work listed here is perhaps best categorized as "ongoing".

Develop "semi-distributed" network support:
The "grand plan" for xanadu involves a large, highly distributed network.

This will not be readily accomplished, but we believe that an intermediate step
to this, which we call "semi-distributed", is more feasible. Semi-distributed

Apr 25 12:46 1984 -- VII -- Future Directions for Xanadu -- Page 5

networking involves distributing the functionality of a single-node Xanadu
backend over several computers "tightly" coupled by a LAN. Each of the
elements in this system would take responsibility for storing and managing
parts of the different data structures, with one central machine acting as
coordinator and request dispatcher. Orgls, being independent of one another,
can be spread over several machines. The granfilade would reside on a central
machine, though the data at which the granfilade points could be spread over
several machines. The spanfilade, though it needs to be a centralized
resource, could certainly be given a CPU of its own too. All of this is
another large bite to chew. We guess a month or so to design it and many more
to implement it.

Research into more advanced uses for enfilades:
The enfilade data structure paradigm used to realize the components of the

Kanadu system has, we believe, additional uses. We have examined ideas for
enfilades that would be helpful in such diverse applications as computer
graphics, air traffic control, molecular engineering and relativistic physics.
While the degree of rigorous analysis that has been performed in any of these
fields is minimal, informal examination suggests that a closer look would be
fruitful. At the present time this is an ongoing low-level effort and will
undoubtedly continue as such.

Develop "fully-distributed" network support:
"Fully-distributed" networking implies large numbers of loosely coupled

systems each functioning without centralized control and without necessarily
having full knowledge of the complete network topology. This clearly involves
solving a lot of problems that are at the forefront of research into
distributed processing. Much further development work will be required before
fully-distributed networking -is possible. We don't care to even try to guess
how long this will take, if it is possible at all. It is a problem we would
like to work on.

We feel that much of the present work being done in the field of
distributed data processing does not address the fundamental problems of
network-based storage. Mainstream research in this field seems to concentrate
on the problems of deadlock avoidance and the maintenance of data integrity.
The Xanadu mechanisms of berts and versioning Side-step these problems
entirely. We feel that the hardest problems in distributed data storage have
to do with the questions of how a node in the network determines where
non-local data is to be found and how it determines how best to route its
queries through the network in the absence of less than perfect knowledge of
the network layout. In the Xanadu system this involves the problems of
determining the existence and locations of remote links to, and remote versions
of. local orgls and keeping track of who elsewhere knows about changes made
locally. Our enfilade paradigm hints at some potential solutions to these
problems: wids and disps may be viewed as a mechanism for representing partial
knowledge. Some sort of enfiladic structure might be constructed to allow a
Kanadu network node to maintain a representation of the overall network
topology and of the contents of other nodes without requiring that the node
have complete knowledge of everything that is happening elsewhere. We are fond
of an analogy to the Hindu "Web of Indra", an infinite, intricate latticework
of jewels in which each facet of each jewel holds a reflection of the whole
lattice, including the reflections of the whole in the faces of all the other
jewels.

Apr 25 12:47 1984 -- VIII -- Analysis of Xanadu Performance -- Page 1

Analysis of the Memory Usage and Computational Performance of the Kanadu System

ABSTRACT: Well golly. It's log. What else is there to say?

This document analyzes the theoretical performance of a multi-user Xanadu
backend, constructed according to our present plans, in terms of memory (core
and disk) consumption and computational requirements. It also discusses,
briefly, the performance of the present implementation and how this performance
differs from the most current design.

Memory/CPU Overhead

The current design for a multi-user xanadu system calls for multiple
processes in the backend processor to share a common segment of core memory
which willcontain the in-core portiOns of the enfiladic data structures.
Modifications to these data structures are permitted only under the umbrella of
serializing transactions. Each transaction represents a single primitive
operation on the data structures and is executed in an uninterruptable block of
computation during which time the other processes are excluded from looking at
or themselves modifying the system enfilades. Reading from disk is performed
by Kanadu's underlying virtual memory manager when a process attempts to read a
piece of some data structure which is not in core. Writing to disk is also
the job of the virtual memory manager, and occurs when unused portions of the
data structures are swapped out of core to make room for things being read in
or when a process requests the virtual memory system to checkpoint its state.

~he data structures required in-core for system operation are the
granfilade (including the atoms its bottom crums date, the spanfilade and
some number of poomfilades. However. only certain parts of these data
structures need be core-resident at any given time. An operation performed on
the data structure reads or modifies certain bottom crams and their ancestors.
and only those branches of the trees which are are currently being used need be
kept in core.

Enfilades are, in general, said to be logarithmic with the number of data
items stored. in terms of both time to perform the various primitive operations
and in terms of data structural storage overhead. Like many generalizations,
this one is not completely correct. Storage overhead is logarithmic.
However, certain multi-dimensional enfilades have non-logarithmic factors in
the times required for certain useful retrieve and edit operations. These are
discussed in more detail in the companion paper on enfilade theory. The worst
case involves a term varying as the square root of a measure of orgl size, but
we are not sure of the consequences of such non-logarithmicities in terms of
system performance on typical documents. We believe that they are not a
significant source of inefficiency.

OUr memory management scheme requires that crums in core (i.e .• the
.Iactive" crums) be accompanied by all their ancestors. The volume of the
ancestor crums, as mentioned above, grows as the logarithm of the number of
bottom crums in the whole system. Thus, core requirements vary as the product
of the number of bottom crums in use with the logarithm of the total number of
bottom crums in the corresponding enfilade(s). The amount of disk swapping
over time will be directly proportional to the amount of change in the set of
active bottom crums,which is effecvy constant for a given number of users.

The regularities of enfilades and their associated algorithms invite the

Apr 25 12:41 1984 -- VIII -- Analysis of Xanadu Performance -- Page 2

design of a memory management system that takes explicit account both of disk
blocks and of the (somewhat different) tree-structures in core. Thus, we think
that Xanadu's virtual memory manager can make more astute judgements about what
to swap to disk than can a more general page-oriented virtual memory scheme.
If Xanadu is installed on a system with such a virtual memory mechanism
underneath, then it will need to know how much core it really has to work with.
We are not sure how our virtual memory scheme would interact with those of
list-oriented systems, since we are not current in our knowledge of
list-oriented virtual memory techniques. We will undoubtedly learn about these
if we work such systems to any significant extent.

Subtree sharing is used in multi-versioning orgls so that the common
portions of different versions are stored in common. We believe that different
versions of a given piece of material will have significant commonality and
thus that subtree sharing will substantially reduce memory consumption. The
exact degree of savings realized depends on the degree of commonality between
versions which in turn depends upon the data being stored and on how the
versions differ. Tradeoffs involving subtree sharing can better be studied
when a fully operational system is available, since we can then see how people
actually use it.

I/O OVerhead

The Xanadu system makes use of two types of input/output (I/O). These are
disk-block I/O, for data retrieval and long-term storage (via the virtual
.emory mechanism), and character I/O, for interaction with the frontend.

The frontend/backend interface is designed to minimize backend character
I/O. The backend transmits requested data to the frontend in a terse format
and does not concern itself with screen management or data display functions,
since these typically require substantial computational overhead and I/O
bandwidth.

The CUrrent Implementation

Although the present system implementation has the basic algorithmic
efficiency described above, it is inefficient in many low-level ways. We
believe that, in general, optimization is best left until one has a working
system to optimize. Many of the data structures now contain data which is
redundant or stored in a wasteful aanner. For example, it is common to use a
full-word integer -- four bytes -- to store a one-bit flag. This would be
changed in a production system, but makes sense in a development system because
it simplifies the code by eliminating the need to twiddle individual bits.
This in turn makes it easier to get the system working in the first place.
Many data objects which are inherently variable in size are now stored in
fixed-size chunks of memory which are typically much larger than required for
the average object. For example, all tumblers are now 40 bytes long, but a
typical tumbler will only occupy a fraction of this space in a variable-length
implementation.

A single C struct is used to represent the upper crums of all three
types of enfilades. This struct occupies 220 bytes in core and 164 bytes on
disk. For storage on disk, the crums are packed into a struct which represents
an entire loaf. The disk loaf struct is 100. bytes long and contains 6 crums.
The packing factor was chosen to enable a loaf to be stored in a single
l024-byte disk block. A cram is read into memory together with its sibling

Apr 25 12:.7 1984 -- VIII -- Analysis of xanadu Performance -- Page 3

CrumB, since disk blocks are read as wholes. To read in a bottom crum thus
requires up to 6*220=1320 bytes times the depth of the enfilade. This in turn
is the base-6 logarithm of the number of bottom crums in the whole enfilade.

Granfilade bottom crums contain either characters or orgls. A character
bottom crum may contain up to 800 characters. An orgl bottom crum contains a
single orgl pointer. This is in turn a struct which can hold both a core
address and a disk address. The disk address is the permanent location of the
fullcrum of an orgl on disk. The core address is the location in core of the
core-resident fullcrum, if one exists (i.e., if the orgl is in core). The
core location is null if the orgl has not been brought in from disk. Although
up to 800 characters may be packed into a granfilade character bottom crum, no
effort has been made to similarly pack orgl bottom CrumB. This is another
source of inefficiency that can be easily corrected when appropriate.

Spanfilade and poomfilade bottom crums differ little from upper crums,
but (like granfilade orgl bottom crums) are not tightly packed when on disk.

Miscellaneous Issues

The present prootype implementation spends a signican frction of its
~PU time in a few low-level routines that perform tumbler comparison and
tumbler arithmetic: these account for between 30% and 50' of the systemts total
CPU usage. Though simple, these operations are heavily used. Further, they
require a procedure call and return each time they are invoked, and involve
data types which are not supported by the underlying hardware. These
characteristics make the tumbler operations good candidates for implementation
in microcode.

Another support function that consumes a lot of computational overhead is
storage allocation and free-space management (involving both core and disk
space). The present scheme 1s modeled on Unix's storage allocation facilities,
but was implemented from scratch since the Unix facilities try to gobble up
all of the available core in the system and then blow up when they run out of
space. The Unix storage allocation mechanism also requires an excessive
amount of storage overhead when. as in our system. very large numbers of small
pieces (i.e .• a few bytes each) are being allocated and freed with great
frequency. OUr present storage manager is modelled after Unix's, so that
it is not an improvement over the Unix storage manager in this respect. There
are many possible techniques for dealing with storage allocation that are
better adapted to dealing with small pieces. For larger pieces. a scheme using
a doubly-indirect index through a table to ease compation of storage may be
most appropriate. This would resemble the system used in Smalltalk-SO (insert
reference).

Apr 2 15:26 1984 -- IX -- Xanadu Frontend/Backend Interface -- Page 1

xanadu Hypertext System Frontend/Backend Interface

This document describes the current (April 1, 1984) Xanadu
frontend/backend interface language. This document also is in the form of a
BNF for the language with annotations describing what the various pieces are
for.

Formats for information exchanged between the backend and the frontend:

<wdelim> ::= '\n'

The newline character is used throughout the protocol as a general purpose
delimiter.

Tumblers:

<tumbler>
<texp>
<tumblerdigit>
<tdelim>

::= <texp> <tumblerdigit>* <wdelim>
: : = <integer>
::= <tdelia> <integer>
: : =-

Tumblers are denoted by period separated strings of integers.

Addresses:

<doc id>
<doc-set>
<link id>
<doc vsa>
<span-set>

<spec-set>
<spec>

<vspec-set>
<vspec>
<vspan-set>
<vspan>
<ndocs>
<nspecs>
<nvspecs>
< nspans >

: :c
: : z:

: : =
: =-
: :-
: :-=
: : =
: : ..
: : c

: : II:

: : =
: : =
: : =
: : =
: : =
: : =

<tumbler>
<ndocs> <doc id>*
<tumbler>
<tumbler>
<nspans> ·
<tumbler> <tumbler>
<nspecs> <spec>*
{ 's' <wdelim> } I { 'v' <wdelim> <vspec> }
/* v for vspec, s for span */
<nvspecs> <vspec>*
<doc id> <vspan-set>
<nspans> <vspan> *

<integer> <wdelim>
<integer> <wdelim>
<integer> <wdelim>
<integer> <wdelim>

Addresses come in various flavors. A <doc id> is the V-stream address of
a document (i.e., an invariant ergl identifier in the new interface model). A
<link id> is the V-stream address of an atom which happens to be a link. A
<doc vsa> is a V-stream address of an atom inside some document (i.e., an
ordinary V-stream address). A indicates a range of addresses and is
denoted by a starting address tumbler and a length tumbler. <doc-set>s,
<span-set>s, <spec>s, <spec-set>s, <vspec>s, <vspec-set>s, and <vspan>s are
various sorts of collections of all of these

Apr 2 15:26 1984 -- IX -- xanadu Frontend/Backend Interface -- Page 2

Stuff:

<vstuffset> : : I: <nthings> <vthing>*
<vthing> : :- <text> I <link id>
<text-set> : : Ie <ntexts> <text>*
<ntexts> : : 2: <integer> <wdelim>
<text> : : = <textflag> <ncbars> <char>· <wdellm>
<textflag> : :- 't'
<nehars> : ! = <integer> <weI i.>
<nthings> : : = <integer> <wdelim>

"Stuff" is the generic term for the various sorts of things tbat can be
found in a document: text and links.

Link stuff:

<from-set>
<to-set>
<home-set>
<link-set>
<nl ink.s >

: : = <spec-set>
: : = <spec-set>
: : - <spec-set>
::= <nlinks> <link id>*
::= <integer> <wdelim>

Links are generally talked about in terms of their end-sets.

Calls to the backend:

CREATENEWDOCUMENT ::= <createdocrequest>
returns <createdocrequest> "<doc id>

<createdocrequest> ::= '11' <wdelim>

This creates an empty document. It returns the id of the new document.

CREATENEWVERSION ::c <createversionrequest> <doc id>
returns <createversionrequest> <doc id>

<createversionrequest> ::= '13' <wordelia>

This creates a new document with the contents of document <doc id>. It
returns the id of the new document. The new document's id will indicate its
ancestry.

INSERT ::= <insertrequest> <doc id> <doc vsa> <text set>
returns <insertrequest>

<insertrequest> ::= '0' <wdelim>

This inserts <text set> in document <doc Id> at <doc vsa>. The v-stream
addresses of any following characters in the document are increased by the
length of the inserted text.

Apr 2 15:26 1984 -- IX -- Xanadu Frontend/Backend Interface -- Page 3

DELETEVSPAN ::= <deleterequest> <doc id>
returns <deleterequest>

<deleterequest> ::= '12' <wdelim>

This removes the given span from the given document.

REARRANGE ::- <rearrangerequest> <doc id> <cut set>
returns <rearrangerequest>

<rearrangerequest> ::- '3' <wdelim>
<cut set> ::= <ncuts> <doc vsa>*
<ncuts> ::~ <integer> <wdelim> /* ncuts - 3 or 4 */

The <cut set> consists of three or four v-addresses within the specified
document. Rearrange transposes two regions of text. With three cuts, the two
regions are from cut 1 to cut 2, and from cut 2 to cut 3, assuming cut 1 < cut
2 < cut 3. With four cuts, the regions are from cut 1 to cut 2, and from cut 3
to cut 4, here assuming cut 1 < cut 2 and cut 3 < cut 4.

COpy ::- <copyrequest> <doc id> <doc vsa> <spec set>
returns <copyrequest>

<copyrequest> ::- '2' <wdelim>

The material determined by <spec set> is copied to the document determined
by <doc id> at the address determined by <doc vsa>.

APPEND ::~ <appendrequest> <text set> <doc id>
returns <appendrequest>

<appendrequest> ::= '19' <wdelim>

This appends <text set> onto the end of the text space of the document
<doc id>.

RETRIEVEV ::= <retrieverequest> <spec set>
returns <retrieverequest> <vstuffset>

<retrieverequest> ::= '5' <wdelim>

This returns the material (text and links) determined by <spec set>.

RETRIEVEDOCVSPAN ::= <docvspanrequest> <doc id>
returns <docvspanrequest> <vspan>

<docvspanrequest> ::= '14' <wdelim>

This returns a span determining the origin and extent of the V-stream of
document <doc id>.

Apr 2 15:26 1984 -- IX -- Xanadu Frontend/Backend Interface -- Page 4

RETRIEVEDOCVSPAHSET ::= <docvspansetrequest> <doc id>
returns <docvspansetrequest> <vspanset>

<docvspansetrequest> ::= 111 <wdelim>
<vspanset> ::- <nspans> <vspan>*

This returns a span-set indicating both the number of characters of text
and the number of links in document <doc id>.

MAKELINK ::- <aakelinkrequest> <doc id> <doc vsa> <from set> <to set>
returns <makelinkrequest> <link id>

<makelinkrequest> ::= 14 1 <wdelim>

This creates a link in document <doc id> from <from set> to <to set>. It
returns the id of the link made.

PIHDLIKKSFROMTO ::~ <linksrequest> <home set> <from set> <to set>
returns <linksrequest> <link set>

<linksrequest> ::- 111 <wdelim>

Thisrturns a It of al lins which are (1) in <home set>, (2) from all
or any part of <from set>, and (3) to all or any part of <to set>.

FINDNUMOFLINKSFROMTO ::= <nlinksrequest> <home set> <from set> <to set>
returns <nlinksrequest> <nlinks>

<nlinksrequest> ::= 16 1 <wdelim>

This returns the number of links which are (1) in <home set>, (2) from all
or any part of <from set>, and (3) to all or any part of <to set>.

FINDNEXTNLINKSFROMTO ::= <nextnlinksrequest> <from set> <to set> <home set>
<link id> <nlinks>

returns <nextnlinksrequest> <linkset>

<nextnlinksrequest> ::~ '8' <wdelim>

This returns a list of all links which are (1) in the list determined by
<from set>, <to set>, and <home set> as in FINDLINKSFROMTO, (2) past the link
given by <linkisa> on that list and, (3) no more than <n> items past that link
on that list.

RETRIEVEENDSETS ::= <retrieveendsetsrequest> <spec set>
returns <retrieveendsetsrequest> <from spec set> <to spec set>

<retrieveendsetsrequest> ::= 126' <Ndelim>

Apr 2 15:26 1984 -- IX -- xanadu Frontend/Backend Interface -- Page 5

<from spec set> ::c <spec set>
<to spec set> ::- <spec set>

This returns a list of all link end-sets that are in <spec set>.

SHOWRELATIONOF2VERSIONS ::- <showrelationrequest> <spec set> <spec set>
returns <showrelationrequest> <correspondence list>

<showrelationrequest> ::= '10' <wdelim>
/* this is a wild guess at the vague form of the response */
<correspondence list> ::c <ncorresponences> <correspondence>*
<corresponence> ::= <item> <item>
<item> ::= <doc id> <vspan>
<ncorrespondences> ::= <integer> <wdelim>

This returns a list of ordered pairs of the spans of the two spec-sets
that correspond.

FIHDDOCSCONTAINING ::= <docscontainingrequest> <vspec set>
returns <docscontainingrequest> <doc set>

<docscontainingrequest> ::= '22' <wdelim>

This returns a list of all documents containing any portion of the
aaterial included by <vspec set>.

NAVIGATEONHT ::= <navigateonhtrequest> <totally undefined>
returns <navigateonhtrequest> <totally undefined>

This re-edits a document to any point in its editing history.

Apr 25 12;41 1984 -- X -- Annotations to the Kanadu Source Code -- Page 1

xanadu Hypertext Source Code Annotations

This document describes various aspects of the C source code for the
current implementation of the xanadu Hypertext System backend. This document
is intended as a guide and reference for people examining the source and
readers may find parts of it to be fairly meaningless without a copy of the
backend source as a companion document.

CODING CONVENTIONS

The Xanadu backend is written in C and we try to follow a fairly small set
of coding conventions.

Identifiers -- we use long identifiers for the names of functions and
global variables. The purpose of long identifiers, in our estimation, is not
merely to avoid the use of cryptic abbreviations but to enable an identifier to
contain a complete phrase or sentence fragment describing the thing identified.
Por example, a tunction to retrieve end-sets from the spanfilade would be named
retrieveendsetsfromspanfilade in preference to, say, retspanfends. The
purpose of this convention is to Bake the code more self-documenting. Long
identifiers are used in preference to descriptive comments at the beginning of
each function. There are two reasons for this: first, coaments tend not to be
updated in the frenzy of debugging and thus the comments and the actual code
tend to drift away from each other; second, such comments are tied to the
definitions of functions rather than to their use, thus making the purpose of a
function call obscure if the function name is obscure.

Unfortunately, the long identifier convention was not followed from the
very beginning of implementation, and some older pieces of code contain
functions with shorter, less descriptive names. Also, note that we do not use
any contextual cues to indicate the separations between words in an identifier,
such as underscores (retrieve endsets from spanfilade) or capitalization
(retrieveEndsetsFromSpanfilade). The original justification for this was
that an identifier is a single unit, not a bunch of separate words. As a
practical matter, if we had to do it over again we would probably follow the
capitalization-of-interior-words convention. However, we feel that changing
the convention in mid-implementation would result in confusion.

Another side-issue is that in standard C in the Unix environment, only the
first eight characters of an identifier are significant (and only the first
seven for external symbols). To cope with this we use a preprocessor which
prepends a unique sequence of characters to any long identifiers which
disambiguates them within seven characters. Currently, this preprocessor is
used in all the C software we write. Soon we will be converting to 4.2BSD Unix
which supports long identifiers directly.

Pormating -- we use a control-structure formating convention which is
popularly called the "one true brace style". The following examples are
illustrative:

if (youdontcutthatout) {
illtellyourmother();

}

if (itdoesntwork) {
fix();

Apr 25 12:47 1984 -- X -- Annotations to the Xanadu Source Code -- Page 2

} else if (itworksrealgood) {
sell();

} else (
publish () ;

}

while (thecatsaway) (
themicewillplay();

}

for (hesa(): jollygood: fellow(» {
whicbnobodycandeny();

}

switch (swarlock) (

}

case of dynamite:
goboom() :
break;

case of coke:
takea() ;
break;

default:
thebankloses();
break;

Functions are formated according to the following pattern:

typeofreturneddata
functionname (firstargument, secondargument)

typeoffirstargument firstargument;
typeorsecondargumen~ secondargument;

{

}

typeoffirsttemporaryvariable firsttemporaryvariable;
typeofsecondtemporaryvariable secondtemporaryvariable;

bodyoffunction;

Another formating convention we often follow is to keep very long lines
~as is", rather than splitting them up. This is partially due to the fact that
nobody has been able to agree upon a consistent convention for splitting lines
and partially to enable us to unambiguously locate things using "grep". It
does, however, result in some ugliness if the code is displayed or printed on a
narrow (i.e., 80 columns or less) device.

Use of types -- We follow the practice of defining new data types for any
structs that are used. In addition, types are defined for common uses of

Apr 25 12:47 1984 -- X -- Annotations to the Xanadu Source Code -- Page 3

normal data types such as ints. Most type names begin with "type", for
example:

typedef struct foobarstruct typefoobarstruct;
An historical artifact found in some of the code is that many types are defined
using #define rather than typedef. These definitions date back to the
initial phases of implementation in BOS C, a CP/M based C dialect which lacks
the typedef construct.

Comments -- As a rule, we are sparing in our use of comments. It has been
our experience that comments and the implementation have a tendency to drift
away from each other (as mentioned above). Comments are reserved for
explaining things that are difficult to make obvious from the structure of the
code itself (i.e., things which can't be made self-documenting). These are
things such as efficiency hacks for optimization, kludges of any kind, obscure
debugging fixes, and peculiar data structure use. Comments are also used to
block out pieces of code for debugging purposes. If, when debugging, some
function is found to require revisions which are either substantial or subtle,
it is our practice to "comment out" the offending piece of code, make a copy,
and then modify the copy. This enables us to recover the old version if we
really mess up the new one. To aid in this, our preprocessor supports
recursively nested comments. This enables us to comment out sections of code,
which may themselves contain comments, with impunity.

COMMENTARY ON THE PRESENT SYSTEM SOURCE CODE

The present backend consists of slightly over 12,000 lines of C. Most
(perhaps 75%) of this bulk is devoted to various support operatiOns such as
storage allocation and disk space management. This code is divided into
approximately 500 C functions spread over approximately 50 files.

The two versions of the system --

We maintain two versions of the backend. One is called xumain and the
other is called backend. Backend is the true backend program which
interacts with a frontend. Xumain is a standalone version for debugging
purposes which prompts the terminal directly for the input that it would
ordinarily get from a frontend. The expected format of this input is
the same as the what a frontend would produce and xumain is therefor considered
"user hostile". We are gradually phasing xumain out as our frontend becomes
more functional and sophisticated. Both versions share all of their code
except for the very top level (main) and the interface protocol I/O routines.

High-level structure --

Both versions have the same structure. The main routine calls some
initialization routines and then enters a loop. Inside this loop it repeatedly
gets a request from the frontend (or the user terminal in the case of xumain)
and processes it. The actual processing is done by a series of semantic
routines, one for each request in the interface protocol. The selection of
which semantic routine is to be used is determined by a table indexed by
request number (the request number is, syntactically, the first thing in any
request). Each of the semantic routines has the same basic structure. First,
a "get" routine is called which reads and parses the parameters appropriate
to the given request (there are two sets of "get U routines, one each for xumain

Apr 25 12:47 1984 -- X -- Annotations to the Xanadu Source Code -- Page 4

and backend). The "get" routine builds the appropriate data structures to
represent the information contained in the request. A "do" routine is then
called which performs the actual request. There is also one "do" routine per
request. Each of these do routines calls the appropriate high-level enfilade
manipulation routines to accomplish the requested action. The Udo" routine
returns a data structure containing the appropriate information in response to
the request. Finally, a "put" routine is called which packages the information
in the appropriate format and sends it back to the frontend (as with the "get"
routines, there are two sets of "put" routines) .

Storage management and virtual memory

The largest portion of the code is devoted to storage allocation and
deallocation. We found it necessary to write our own storage allocator because
the one Unix provides could not cope with our application. In particular,
there is no way to tell when you have run out of space when using the Unix
storage routines. We also must manage the allocation of disk space. The
present implementation simulates a raw disk by storing everything in a single
giant Unix file named "enf.enf".

The coredisk virtual memory mechanism uses a cyclical garbage collector
called the grimreaper. All of the data structures resident in core at any
particular time are linked together in a large circular list. Associated with
each piece is an age. When something must be swapped out to make room for
something being swapped in, grimreaper traverses this list. Things which are
sufficiently old are swapped out or discarded (depending upon whether or not
they have been altered since they were brought in from disk). Things which are
not old enough to be reaped have their ages incremented. Grimreaper
continues traversing this list until enough space is freed to meet the present
demands.

Another data structure used internally and which is not described
elewhesa hi calaask. A task is simply a handle on a linked
together collection of allocated temporary core storage associated with some
function or task (hence the name) 1n the system. Temporary storage is
allocated to a particular task. When finished with the activity to which the
task structure belongs, the entire body of allocated temporary storage can be
easily deallocated by traversing the allocation list in the task structure.

Creeping abbreviationism --

In spite of our long identifier convention, certain standard abbreviations
have crept into some function names. The expansion of these 1s as follows:

pm -- poomfilade
sp -= spanfilade
gr == granfilade
cbc == core bottom crum
cuc == core upper crum
dbc == disk bottom crum
duc -- disk upper crum
nd == n-dimensional enfilade (e.g. , the poomfilade or spanfilade)
seq == sequential enfilade (e.g . , the granfilade)
dsp -- disp
vsa == v-stream address
isa -- i-stream address

Apr 25 12:47 1984 -- X -- Annotations to the xanadu Source Code -- Page 5

Other dangling cruft --

The present code contains a lot of ugliness due to debugging efforts.
Often, pieces of code are commented out which are duplicate versions of
troublesome routines. In addition, there are diagnostic print statements and
calls to data structure dumping routines that clutter many places. These my
somtimes obsure the true purpose of the code they are found in, especially
if they are heavily used. There is also a whole file full of diagnostic
routines which test various functions and allow complicated data structures to
be dumped to the screen or to a file in a readable format. The routines are
useful and important but add to the bulk of the code.

Apr 25 12:41 1984 -- XII -- Glossary of Xanadu Terms -- Page 1

Glossary of Terms

This document is a comprehensive glossary of all the new terms introduced
in the Xanadu documents. Terms are listed in alphabetical order, followed by
their definitions. Little effort has been made to avoid circular definitions:
for more complete explanations, read the relevant documents. Etymological
notes are given in some cases for historical value and the amusement of the
reader. These are enclosed in brackets (11[11 and 11]11).

append -- One of the fundamental operations on enfilades. Adds new data items
to an enfilade at the "end" of some dimension of index space.

atom -- One of the fundamental primitive entities that the Xanadu System deals
with. There are two types of atoms: characters and orgls.

backend -- The component ofaXanadu System responsible for managing the
actual storage and retrieval of atoms.

bert -- A locking identifier associated with the top of an orgl. Identifies
the particular version of an orgl being dealt with when that orgl has
been changed but not assigned a permanent address. Also prevents
deadlock between processes by allowing concurrent access to documents.
[Berts are named after Bertrand Russell, because they represent a
fanatical effort to keep things consistent.]

bottom crum -- A crum at the bottom level of an enfilade. May be different
regular crums since it may contain actual data that the upper crums do
not contain.

core -- The term we prefer for a computer's local high-speed random access
memory. [We like the term "core" even though it is archaic because
1) the term IlRAMII is misleading, since disk is random access too: 2)
the term "semiconductor memory" is as implementation technology
specific and as likely to eventually become archaic, as well as being
an unwieldy mouthful of words; 3) the term "core" is short, pithy and
easy to remember; 4) everybody knows what you mean anyway.]

core/disk memory model -- The memory model used in the Kanadu System
architecture which assumes a limited amount of high speed core memory
coupled with large quantities of disk storage.

crum -- A "node" (in the traditional sense of the term) in an enfiladic data
structure. Contains the wid and disp. [Named after a river in
Pennsylvania on the banks of which the crum was invented. Also an
acronym for "Chickens Running Under Mud" (don't ask).]

crum-block -- A loaf. Usually used in the context of packing large numbers of
crams together in a disk block for long-term storage.

cut -- One of the fundamental operations on enfilades. Makes splits in the
data structure for purposes of insertion, deletion or rearrangement.
Cut is also a noun referring to a split made in the data structure by
the cut operation.

data disp -- A disp whose purpose is not the location of items in index space

Apr 25 12:47 1984 -- XII -- Glossary of Xanadu Terms -- Page 2

but rather the implicit containment of data itself.

data wid -- A wid whose purpose is not the location of items in index space but
rather the implicit containment of data itself. A data wid is
generally an abstraction or generalization of all the data stored
beneath its crum.

data widdative function -- A function for computing a crum's data wid from the
wids and disps of its children.

delete -- One of the basic operations on enfilades. Removes material from a
specified portion of the data structure.

disk -- The term we prefer for a computer's lower-speed high volume storage.
[The term "disk", like "core", is preferred because of its simplicity
and brevity, though it may not be totally accurate.]

disp -- One of the two principal components of a crum (the other being the
wid). Indicates the crum's displacement in index space relative to its
parent crum. ["Disp" is short for "displacement" but has come to be
its own term, rather than an abbreviation, since in some sorts of index
spaces it may not be a displacement per se.]

DIV poom -- An extended form of the poomfilade that adds an additional
dimension to represent orgl-of-origin. ["DIV" stands for
"Document-Invariant-Variant", the three dimensions of the DIV poom.
Document is a historical term for one conventional type of orgl.]

document -- One of the standard types of orgls in a literature-based xanadu
application. A document is an orgl with two V-spaces: a I'text space"
and a It link space".

drexfilade -- An improved model of the spanmap.
person who invented it.]

[Named after Eric Drexler, the

end-set -- Generic term for the collections of V-spans connected by a link.
[The most simplified notion of a link is as a "magic piece of string"
from one piece of data to another. End-sets are what are found at the
ends of the string.]

enfilade -- One of a family of data structures characterized by being
constant depth trees with wids and disps, rearrangability and the
capacity for sub-tree sharing.

footnote link -- One of any number of possible standard link types. Represents
a footnote.

four-cut rearrange -- One of two "flavors" of rearrange operation. Four cuts
are made in the enfilade and the material between the first two is
swapped with the material between the second two.

from-set -- The first end-set of a link. Contains the set of V-spans at the
starting end of the directed connection represented by a link.

frontend -- The component of the Xanadu System responsible for user interface
and any functions which depend upon the content of the data stored in

Apr 25 12:47 1984 -- XII -- Glossary of Xanadu Terms -- Page 3

the backend (e.g., keyword searches).

frontend-backend interface -- The frontend and the backend communicate with
each other in an interface language called Phoebe over some sort of
communications line or I/O port. The frontend asks the backend to do
things for it and the backend responds to these requests via the
frontend-backend interface.

fulcrum -- The very topmost crum of an enfilade, from which all other crums
are descended. [So called because it "contains" the full enfilade
beneath it. Also, enfilades are frequently illustrated graphically as
broad based isoceles triangles with the fulcrum at the peak (which does
look like a fulcrum).]

grandmap -- One of the primary components of the system. Maps from I-stream
addresses to the physical locations where the corresponding atoms are
stored.

granfilade -- One of the primary data structures in the system. Used to
implement the grandmap. ["Granfilade" implies "grand enfilade". It is
the largest single data structure, in the sense that it "contains"
everything stored in the system.]

historical trace -- A aore advanced (as yet unimplemented) facility of the
Kanadu System which enables the state of an orgl at any point in its
edit history to be determined.

historical trace enfilade The enfilade with stores the history of a phylum
so that the state of any of its orgls at any time may be reconstructed.

historical trace tree -- The branching pattern of changes and versions made to
a phylum over time.

humber A form of infinite precision integer that can represent any number in
a reasonably sized space. ["Humber" is derived from IIBuffaan encoded
number".]

index disp -- A disp whose primary purpose is the location and identification
of data items, as opposed to a data disp.

index space -- The space in which an enfilade "lives". Locations in this space
are used as the index values identifying things to retrieve and the
places to make cuts. An index space may have multiple dimensions,
where a dimension is defined in our context as simply a separable
component of indexing information which may be used by itself in a
sensible fashion to (perhaps only partially) identify or locate
something.

index wid -- A wid whose primary purpose is the location and identification of
data items, as opposed to a data wid.

index widdative function -- A function that computes a crums index wid from the
wids and disps of that crums children.

insert -- One of the basic operations on enfilades. Adds material at some
specified location in the data structure. This operation is redundant

Apr 25 12:.7 1984 -- XII -- Glossary of Xanadu Terms -- Page.

since it may be implemented by an append followed by a rearrange.

invariant orgl identifier -- A tumbler which is both a V-stream address and an
I-stream address which identifies a "top" level orgl (i.e., one that is
directly accessible from the external world rather than being retrieved
as the contents of some other orgl.

invariant part -- The portion of a V-stream address which constitutes an
invariant orgl identifier that identifies the orgl which maps the
V-stream address to some I-stream address. It is a syntactically
separable part of a V-stream address.

invariant stream -- The address space in which atoms are stored. When
initially placed in the system, each atom is assigned to the next
available space on the invariant stream.

I-span -- A span of atoms on the I-stream. Consists of a starting position
together with a length. The term "I-span" is variously used to refer
to the addresses in such a span or to the atoms themselves, depending
upon context.

I-stream -- Abbreviation for "Invariant stream". Used acre commonly than the
longer term.

I-stream address -- A location on the I-stream.

I-stream order The order in which atoms appear on the I-stream.

I-to-V mapping The correspondence between I-stream addresses and V-stream
addresses which is represented by an orgl.

jump link -- One of any nWllber of possible standard link types. Represents the
simplest possible connection from one place to another.

level pop -- one of the fundamental operations on enfilades. Makes the data
structure smaller (in both actual and potential size) by removing a
redundant fulcrum.

level push -- One of the fundamental operations on enfilades. Enlarges the
potential size of the data structure by adding a level on top of the
fulcrum.

link -- One of the standard types of orgls in a literature-based Xanadu
application. A link is an orgl with three V-spaces called "end-sets":
the "from-set", the "to-set" and the "three-set lt

•

link space -- The V-space of a document orgl which contains links.

loaf A group of crums together. Generally used in the context of the group
of sibling crume that are the set children of some other crum. (A loaf
is of course what you get when you pack a bunch of crum(b)s together.]

marginal note link -- One of any number of possible standard link types.
Represents the connection to a "marginal note".

X-dimensional enfilade -- A family of enfilades whose index spaces are

Apr 25 12:41 1984 -- XII -- Glossary of Xanadu Terms -- Page 5

node

orgl

N-dimensional euclidean spaces indexed by cartesian coordinates.

A computer in a distributed processing and data storage network.

One of the primary data structures in the system. Maps from V-stream
addresses to I-stream addresses and vice-versa. ["Orgl" is short for
"ORGanizationaL thingie".]

Phoebe -- The name of the frontend-backend interface language. [Phoebe 1s
derived from "fe-be" which in turn is short for "frontend-backend".]

phylum -- The collective group of orgls represented by an historical trace
tree. [The term "phylum" denotes a tree-like family structure. It
also sounds vaguely like "file".]

POOM -- A permutation-matrix-like mapping which is implemented by the
poomfilade. Used to represent orgls. ["POOM" stands for "Permutations
On Ordering Matrix".]

poomfilade -- The enfilade used to represent POOMs and therefore orgls.

process A particular connection to the backend that may request the storage
or retrieval of characters and orgls.

quote link -- One of any number of possible standard link types. Represents a
quotation.

rearrangability -- One of the properties of enfilades. Rearrangability means
that pieces can be reorganized on one level of the tree and descendant
levels will automatically be reorganized accordingly.

rearrange -- One of the fundamental operations on enfilades. Changes the order
in index space of material. There are two types of rearrange operation
called "three-cut rearrange" and "four-cut rearrange".

recombine -- One of the fundamental operations on enfilades. "Heals" cuts and
compacts the data structure after it has been fragmented by other
operations.

retrieve -- One of the fundamental operation on enfilades. Obtains the data
item associated with a particular location in index space.

span -- A contiguous collection of things, usually characters. Usually
represented as a starting address together with a length. The term is
also sometimes used to refer to the length itself (as in "what is the
span of this document?").

spanfilade -- One of the primary data structures in the system. Used to
implement the spanmap. ["Spanfilade" implies "enfilade for dealing
wi th spans".]

spanmap -- One of the primary components of the system. Maps from the
I-stream addresses of atoms in general to the I-stream addresses of
orgls r@f@r@ncing thos@ atoms.

sub-tree -- Some portion of an enfilade denoted by a crum and all of its

Apr 25 12:47 1984 -- XII -- Glossary of Xanadu Terms -- Page 6

descendants. A sub-tree is itself an enfilade with the crum its peak
as the fulcrum.

sub-tree sharability -- One of the properties of enfilades. Sub-tree
sharability means that sub-trees can be shared between enfilades or
between different parts of the same enfilade in a manner that is
transparent to the fundamental operations that can be performed.

sub-tree sharing -- The act of taking advantage of sub-tree sharability.

text space -- The V-space ota document orgl which contains character atoms.

three-cut rearrange -- One of two "flavors" of rearrange operation. Three cuts
are made in the enfilade. The material between the first and second
cuts is swapped with the aaterial between the second and third cuts.
This can also be seen as aoving the material found between the first
and second cuts to the location defined by the third cut, etc.

three-set -- The third end-set of a link. Contains material the addresses or
contents of which indicate something about the nature or type of the
link. [The term is a pun, counting the end-sets "from, to, three"
(one, two, three).]

to-set -- The second end-set of a link. Contains the set of V-spans at the
terminating end of the directed connection represented by a link.

tumbler -- The type of number used to address things inside the Xanadu System.
A tumbler is a transfinitesimal number represented as a string of
integers, for example "1.0.3.2.0.96.2.0.1.137". ["Tumbler" is sort of
a contraction for "transfinitesimal humber".]

tumbler addition -- A form of non-commutative addition defined on tumblers for
purposes of, among other things, implementing the fI.+." operator for
enfilades constructed in tumbler space.

upper crum -- A non-bottom crum.

variant part -- The portion of a V-stream address which identifies a particular
location inside the orgl identified by the invariant part. It is a
syntactically separable part of a V-stream address.

variant stream -- The address space in .which, to the outside world, atoms
appear to be stored. Also called the "virtual stream" or "V-stream".
(See "V-stream".]

version -- An alternate form for some orgl, representing a past, future or
current-but-different organization for the same body of material.

versioning -- The process of storing alternate organizations for a given body
of material by constructing multiple enfilades which use sub-tree
sharing for the portions where they are the same.

virtual copy -- 1. A copy of some set of atoms made not by duplicating the
atoms but by mapping additional V-stream locations onto the atoms I
I-stream locations. 2.Duplication of some portion of a data structure
by using sub-tree sharing rather than by actually copying the material

Apr 25 12:41 1984 -- XII -- Glossary of Kanadu Terms -- Page 7

stored.

virtuality -- The "seeming" of something. "Virtuality" is to "reality" as
"virtual" is to "real". [Virtuality is one of innumerable terms
coined by Ted Nelson. Since it is a useful concept, the term has stuck
with us.]

virtual space -- A separately addressable sub-region of an orgl. An orgl may
have any number of virtual spaces.

virtual stream -- The address space in which, to the outside world, atoms
appear to be stored. Also called the "variant stream" or "V-stream".
[See "V-stream".]

virtual stream address -- A location on the virtual stream.

V-space -- Short for "virtual space".

V-span -- A span on the V-stream.

V-stream -- Short for "virtual stream" or "variant stream". [The "V" variously
stands for "virtual" or "variant" because of the trade secret status of
much of the Xanadu internals: "Virtual" is the public term, referring tc
the order in which things appear to the outside world. "Variant" is
the private term, referring to the relationship between the Variant
(i.e., changing) order that is shown to the world and the Invariant
(i.e., not changing) order in which things are actually stored.]

V-stream address -- Short for "virtual stream address".

V-stream order The order in which atoms appear on the V-stream.

V-to-I mapping The correspondence between V-stream addresses and I-stream
addresses which is represented by an orgl.

wid -- One of the two principal components of a crum (the other being the
disp). Indicates the cram's width in index space (i.e., the volume of
index space spanned by its children). ["Wid" is short for "width" but
has come to be its own term, rather than an abbreviation, since in some
sorts of index spaces it may not be a width per se.]

widdative function -- The function, characteristic of any particular type of
enfilade, which computes a crum's wid from the wids and disps of its
children. A notable property of the widdative function is that it is
associative.

Xanadu -- The name of our favorite hypertext system. [Taken from the poem by
Samuel Taylor Coleridge about a mythical paradise constructed by
Kubla Khan.]

.==. Notation for operator that tests for the "equality" of two index space
locations .

. <. -- Notation for operator that tests whether one index space location
"precedes" another.

Apr 25 12:47 1984 -- XII -- Glossary of Xanadu Terms -- Page 8

.<=. -- Notation for operator that tests whether one index space location
is "less than or equal to" another.

. +. Notation for index space "addition" operator .

Notation for index space "subtraction" operator.

• 0. Notation for the origin of the index space .

Apr 26 08:50 1984 -- XIII -- Outline of Tasks -- Page 1

Description of tasks and considerations for Xanadu development plan

(Task names begin with capital letters (i.e., IIDocument VM II). Considerations
begin with lower case letters (i.e., "origin of link spans"). Tasks whose
descriptions are not self evident from their titles are explained in greater
detail following the task name.

A. Design
Includes all those tasks which involve figuring out the broad outlines
of how the system is to be put together and what the external form of
the system should be. Does not include detailed implementation
design (that is considered a part of the implementation task).

1. Host system training
Familiarize ourselves with the idiosyncrasies of the tools we are

going to be using throughout the project.

&. Understand Interlisp
Learning our way around the Interlisp environment: how
to compose, compile and debug programs and how to use the various
tools that are lying around.

b. Figure out their VM
Obtain a solid working understanding of the underlying virtual

memory mechanism in the Interlisp-D system.

2. Virtual Memory
Involves designing the backend virtual memory system to support
Kanadu's needs while coexisting harmoniously with the (already
present) virtual memory system of the host environment.

&. Integrate with host VM
Figure out how to construct our VM on top of Interlisp's, without
clashing with it and hopefully being assisted by it.

b. Design LRU scheme, working sets, list VM
Design the basic mechanisms of our virtual memory.

c. Design coredisk, free disk allocation
Work out some of the crufty details of our VM.

d. Document VM

3. New data structures
The various considerations associated with this task (items a-d) are

pending design problems to be solved in the new data structures.

a. origin of link spans
b. virtual copy fix
c. link span info in granf
d. exfoliating trees

e. Document new data structures

4. Time stuff

Apr 26 08=50 1984 -- XIII -- Outline of Tasks -- Page 2

Figure out how to cope with the time dimension of material stored in
the system. Items a-d are considerations.

a. requirements for retrieval
b. time-stamp stuff
c. time sieving
d. delta-t wids in HT, elsewhere
@. times of interest! cr@at@, modify, read (first, last, what parts when?)
d. retrieve by? primitives; time restrictions

g. Design time stuff

5. Future plans and considerations
Involves those aspects of the future Xanadu design which must be
built into the single-user system to avoid having to redesign or
reimplement the system from scratch when we undertake development of
a multi-user distributed system. This task essentially consists of
making sure that we are not stepping on our own toes.

a. Design modularization for multi-user
Determine the modular structure of a mUlti-user system so that the

modular structure of the single-user system will not differ from
it significantly.

b. Figure out modularity for semi-distributed (single-node, multi-CPU)
Design the architecture of the future semi-distributed system in
order to find any ramifications that such plans might have on the
current single-user design.

c. Figure out communications and synchronization for semi-distributed

d. Consider ramifications of greater distribution (multi-node)

e. Design archiving; internode protocol
Design facilities for archiving versions of documents in order to

cope with storage fragmentation when the volume of data stored in
the system becomes very large. This includes some thinking about
distributed systems since things that originate in one part of a
distributed system might be archived in another.

f. Document future plans and considerations

6. Historical Trace
Design the virtuality of the historical trace facility.

a. HT black box spec
Determine the desired functional behavior of the historical trace
facility.

b. HT protocol
Design the components of the frontend/backend interface protocol

which deal with the historical trace facility.

7. Protection and authority control
Select and design the data protection. security and access control
features of our system.

Apr 26 08:50 1984 -- XIII -- Outline of Tasks -- Page 3

a. Design protection

b. Design authority control

8. Retrieve protocol
Design the frontend/backend interface protocol components for the
retrieval of information from the backend.

a. Format and design of restriction sets

b. Bert internal and external representation

c. Design retrieve protocol

9. Backend design completion
Various miscellaneous things which must be accomplished before the

backend design can be said to be truly complete.

a. Verify that disk output is safe from crashes
Make sure that the design is such that data integrity and the
structure of orgls is preserved if the system crashes.

b. Document internal structures design

c. Document new protocols
Document the various pieces of the frontend/backend interface

protocol that have been designed.

10. Test-Frontend
Design a frontend for purposes of testing and diagnosing the backend.

a. Design test-FE functionality

b. Design test-FE Virtuality

B. Implement
Includes designing the details of the actual code to be produced and
then actually producing it, including both coding and debugging.

1. Additional host system training

a. Really understand Interlisp
Learn about various more subtle aspects of the Interlisp-D

environment that may effect the implementation effort.

2. Variable length tumblers
Produce the primitive routines to handle Xanadu's peculiar underlying
data types.

a. Design tumbler routines

b. Implement tumbler routines

3. Virtual Memory
Implement the backend virtual memory.

Apr 26 08:50 1984 -- XIII -- Outline of Tasks -- Page 4

a. Figure out how to implement shared core
This is necessary for future multi-user operation.

b. Design backend VM code

c. Implement backend VM

4. New data structures
Implement the backend data structures and the routines to manipulate

them.

a. Unify enfilade routines with object model
Structure the data structures and the code which manipulates them so
that one set of consistent enfilade routines may be used with a
variety of different underlying enfilades.

b. Figure out HD orgls
Determine the generalization of orgls to mUltiple dimensions so that
the present one-dimensional implementation will be a step on the
path to a future multi-dimensional one.

c. Figure out implementation of in-core subtree sharing

d. Design code to handle data structures

e. Implement code to handle data structures

f. Document data structures' implementation

5. New frontend/backend protocol
Consists of implementing the parser and interpreter for the

frontend/backend interface protocol. This is the component of the
system which "drives" everything else.

a. Design parser for fe/be interface protocol

b. Design I/O routines

c. Design semantic routines for fe/be interface protocol

d. Implement parser

e. Implement I/O routines

f. Implement semantic routines

6. Backend semantic stuff
Implement the "high level" routines which perform all the actual
data manipulations.

a. Design be semantic routines on top of enfilades

b. Implement be semantic routines on top of enfilades

7. Test-frontend

Apr 26 08:50 1984 -- XIII -- Outline of Tasks -- Page 5

Implement the frontend for testing and diagnosis of the backend.

a. Screen management

b. Frontend VM

c. Command interface

d. Backend interface

e. Interface with world
Provide an interface between the functions of the backend and the

functions of the Interlisp environment.

f. Link following/link handling

g. Retrieval functions

8. Convert single-user to multi-user
Most of the underlying aspects of the system required for multi-user
operation will have been built into the single-user system. This
task involves making the actual step to multi-user.

a. Connect multi-processes

9. Historical Trace
Implement the historical trace facility .

a. Implement transaction log

b. Design HT code

c. Implement HT

10. Security and accessibility
Involves various miscellaneous implementation tasks which must be
completed before the system is truly ready to use.

a. Implement protection and authority control

b. Interface with higher-level network protocols
Implement code to assure that the system may be used as a network­
based resource.

c. Verify that disk output is safe from system failures

11. Archiving
Implement long-term document and version archiving facilities of
various sorts. Items b-d are considerations.

a. Implement version consolidation

b. tape
c. optical disk
d. internode

Apr 26 08:50 1984 -- XIII -- Outline of Tasks -- Page 6

12. Document implementation
Produce the final documentation package for the single-node system.

a. Document pragmatic stuff
Document those aspects of the system which have crept in due to the
underlying environment and due to other practical influences.

b. Final documentation

C. Test and measure
AnalysiS efforts required for the planning of further development.

1. Performance measurements
Perform various performance tests and benchmarks and analyze the
actual performance of the implemented system. Items c-f are
considerations.

a. Perform tests

b. Document performance measurement results

c . disk
d. cpu
e. response time
f. memory

D. Optimize
Make the system faster, more efficient, more compact, etc.

1 . Optimize

a. Optimize

E. Advanced implementation
Additional implementation work to take advantage of the potential for

multi-CPU distribution of the system in the special case of a LAN
coupled environment.

1. Multi-user to Singe-node semi-distributed
Single-node semi-distributed involves distribution of various parts
of a single-node over several machines.

a. Implement multi-user Single-node semi-distributed system

2. Single-node Semi-distributed to Multi-node semi-distributed
Multi-node semi-distributed involves taking advantage of the

rapid and reliable inter-node communications between a small
number of computers which characterizes a local area network (LAN).

a. Figure out modularity for multi-node semi-distributed

b. Figure out synchronization and communications for multi-node
semi-distributed

c. Implement multi-node (LAN coupled) semi-distributed system

Apr 25 12:48 1984 Backend program copyright notice Page 1

Notice: This program belongs to Xanadu Operating Company, Inc.
It is an unpublished work fully protected by the United States
copyright laws. It is considered to be a trade secret and is
not to be divulged or used by parties who have not recieved
written authorization from the owner.

